Abstract

Syntactic linearization algorithms take a bag of input words and a set of optional constraints, and construct an output sentence and its syntactic derivation simultaneously. The search problem is NP-hard, and the current best results are achieved by bottom-up best-first search. One drawback of the method is low efficiency; and there is no theoretical guarantee that a full sentence can be found within bounded time. We propose an alternative algorithm that constructs output structures from left to right using beam-search. The algorithm is based on incremental parsing algorithms. We extend the transition system so that word ordering is performed in addition to syntactic parsing, resulting in a linearization system that runs in guaranteed quadratic time. In standard evaluations, our system runs an order of magnitude faster than a state-of-the-art baseline using best-first search, with improved accuracies.

1 Introduction

Linearization is the task of ordering a bag of words into a grammatical and fluent sentence. Syntax-based linearization algorithms generate a sentence along with its syntactic structure. Depending on how much syntactic information is available as inputs, recent work on syntactic linearization can be classified into free word ordering (Wan et al., 2009; Zhang et al., 2012; de Gispert et al., 2014), which orders a bag of words without syntactic constraints, full tree linearization (He et al., 2009; Bohnet et al., 2010; Song et al., 2014), which orders a bag of words given a full-spanning syntactic tree, and partial tree linearization (Zhang, 2013), which orders a bag of words given some syntactic relations between them as partial constraints.

The search space for syntactic linearization is huge. Even with a full syntax tree being available as constraints, permutation of nodes on each level is an NP-hard problem. As a result, heuristic search has been adopted by most previous work, and the best results have been achieved by a time-constrained best-first search framework (White, 2004a; White and Rajkumar, 2009; Zhang and Clark, 2011b; Song et al., 2014). Though empirically highly accurate, one drawback of this approach is that there is no asymptotic upper bound on the time complexity of finding the first full sentence. As a result, it can take 5–10 seconds to process a sentence, and sometimes fail to yield a full sentence at timeout. This issue is more severe for larger bags of words, and makes the algorithms practically less useful.

We study the effect of an alternative learning and search framework for the linearization prob-
Transition actions are either shifting or popping actions. Off once before parsing finishes, and all the transitions to construct an output, because each word and therefore extensions to parsing algorithms can be used to perform linearization.

For syntactic parsing, the algorithm of Zhang and Nivre (2011) gives competitive accuracies under linear complexity. Compared with parsers that use dynamic programming (McDonald and Pereira, 2006; Koo and Collins, 2010), the efficient beam-search system is more suitable for the NP-hard linearization task. We extend the parser of Zhang and Nivre (2011), so that word ordering is performed in addition to syntactic tree construction. Experimental results show that the transition-based linearization system runs an order of magnitude faster than a state-of-the-art best-first baseline, with improved accuracies in standard evaluation. Our linearizer is publicly available under GPL at http://sourceforge.net/projects/zgen/.

2 Transition-Based Parsing

The task of dependency parsing is to find a dependency tree given an input sentence. Figure 2 shows an example dependency tree, which consists of dependency arcs that represent syntactic relations between pairs of words. A transition-based dependency parsing algorithm (Nivre, 2008) can be formalized as a transition system, \( S = (C, T, c_0, C_f) \), where \( C \) is the set of states, \( T \) is a set of transition actions, \( c_0 \) is the initial state and \( C_f \) is a set of terminal states. The parsing process is modeled as an application of a sequence of actions, transducing the initial state into a final state, while constructing dependency arcs. Each state in the transition system can be formalized as a tuple \((\sigma, \beta, A)\), where \( \sigma \) is a stack that maintains a partial derivation, \( \beta \) is a buffer of incoming input words and \( A \) is the set of dependency relations that have been built.

Our work is based on the *arc-standard* algorithm (Nivre, 2008). The deduction system of the *arc-standard* algorithm is shown in Figure 1. In this system, three transition actions are used: LEFTARC, RIGHTARC and SHIFT. Given a state \( s = ([\sigma \ j i], [k|\beta], A) \),

- LEFTARC builds an arc \( \{ j \leftarrow i \} \) and pops \( j \) off the stack.
- RIGHTARC builds an arc \( \{ j \rightarrow i \} \) and pops \( i \) off the stack.
- SHIFT removes the front word \( k \) from the buffer \( \beta \) and shifts it onto the stack.

In the notations above, \( i, j \) and \( k \) are word indices of an input sentence. The *arc-standard* system assumes that each input word has been assigned a part-of-speech (POS) tag.

The sentence in Figure 2 can be parsed by the transition sequence shown in Table 1. Given an input sentence of \( n \) words, the algorithm takes \( 2n \) transitions to construct an output, because each word needs to be shifted onto the stack once and popped off once before parsing finishes, and all the transition actions are either shifting or popping actions.

<table>
<thead>
<tr>
<th>Transition</th>
<th>( \sigma )</th>
<th>( \beta )</th>
<th>( A )</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>[]</td>
<td>[1...6]</td>
<td>( \emptyset )</td>
</tr>
<tr>
<td>1</td>
<td>SHIFT [1]</td>
<td>[2...6]</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>SHIFT [1 2]</td>
<td>[3...6]</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>SHIFT [1 2 3]</td>
<td>[4...6]</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>SHIFT [1 2 3 4]</td>
<td>[5,6]</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>SHIFT [1 2 3 4 5]</td>
<td>[6]</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>RIGHTARC [1 2 3 4]</td>
<td>[6]</td>
<td>( A \cup { 4 \rightarrow 5 } )</td>
</tr>
<tr>
<td>7</td>
<td>RIGHTARC [1 2 3]</td>
<td>[6]</td>
<td>( A \cup { 3 \rightarrow 4 } )</td>
</tr>
<tr>
<td>8</td>
<td>RIGHTARC [1 2]</td>
<td>[6]</td>
<td>( A \cup { 2 \rightarrow 3 } )</td>
</tr>
<tr>
<td>9</td>
<td>SHIFT [1 2 6]</td>
<td>[]</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>RIGHTARC [1 2]</td>
<td>[]</td>
<td>( A \cup { 2 \rightarrow 6 } )</td>
</tr>
<tr>
<td>11</td>
<td>LEFTARC [2]</td>
<td>[]</td>
<td>( A \cup { 1 \leftarrow 2 } )</td>
</tr>
</tbody>
</table>

Table 1: *arc-standard* transition action sequence for parsing the sentence in Figure 2.

Figure 2: Example dependency tree.
3 Transition-Based Linearization

The main difference between linearization and dependency parsing is that the input words are unordered for linearization, which results in an unordered buffer $\rho$. At a certain state $s = (\sigma, p, A)$, any word in the buffer $\rho$ can be shifted onto the stack. In addition, unlike a parser, the vanilla linearization task does not assume that input words are assigned POS. To extend the arc-standard algorithm for linearization, we incorporate word and POS into the SHIFT operation, transforming the arc-standard SHIFT operation to SHIFT-Word-POS, which selects the word Word from the buffer $\rho$, tags it with POS and shifts it onto the stack. Since the order of words in an output sentence equals to the order in which they are shifted onto the stack, word ordering is performed along with the parsing process.

Under such extension, the sentence in Figure 2 can be generated by the transition sequence (SHIFT-Dr. Talcott-NP, SHIFT-led-VBD, SHIFT-of-NP, SHIFT-a team-NP, SHIFT-Harvard University-NP, RIGHTARC, RIGHTARC, RIGHTARC, SHIFT-.-. RIGHTARC, LEFTARC), given the unordered bag of words (Dr. Talcott, led, a team, of, Harvard University, ).

The deduction system for the linearization algorithm is shown in Figure 3. Given an input bag of $n$ words, this algorithm also takes $2n$ transition actions to construct an output, by the same reason as the arc-standard parser.

3.1 Search and Learning

We apply the learning and search framework of Zhang and Clark (2011a), which gives state-of-the-art transition-based parsing accuracies and runs in linear time (Zhang and Nivre, 2011). Pseudocode of the search algorithm is shown in Algorithm 1. It performs beam-search by using an agenda to keep the $k$-best states at each incremental step. When decoding starts, the agenda contains only the initial state. At each step, each state in the agenda is advanced by applying all possible transition actions (GETPOSSIBLEACTIONS), leading to a set of new states. The $k$ best are selected for the new states, and used to replace the current states in the agenda, before the next decoding step starts. Given an input bag of $n$ words, the process repeats for $2n$ steps, after which all the states in the agenda are terminal states, and the highest-scored state in the agenda is taken for the final output. The complexity of this algorithm is $n^2$, because it takes a fixed $2n$ steps to construct an output, and in each step the number of possible SHIFT action is proportional to the size of $\rho$.

The search algorithm ranks search hypotheses, which are sequences of state transitions, by their scores. A global linear model is used to score search hypotheses. Given a hypothesis $h$, its score is calculated by:

$$Score(h) = \Phi(h) \cdot \vec{\theta},$$

where $\vec{\theta}$ is the parameter vector of the model and $\Phi(h)$ is the global feature vector of $h$, extracted by instantiating the feature templates in Table 2 according to each state in the transition sequence.

In the table, $S_0$ represents the first word on the top of the stack, $S_1$ represents the second word on the top of the stack, $w$ represents a word and $\rho$ rep-
Unigrams
- $S_0$: $S_0p$, $S_0t$, $S_0$, $S_0r$, $S_0$,
- $S_0t$,
- $S_0r$,
- $S_0$,
- $S_0$,
- $S_0$,
- $S_0$: $S_1p$, $S_1t$, $S_1$, $S_1r$, $S_1$,
- $S_1r$,
- $S_1$,
- $S_1$.

Bigram
- $S_0wS_0t$: $S_0wS_0t$, $S_0pS_0t$, $S_0pS_0t$,
- $S_0wS_0r$: $S_0wS_0r$, $S_0pS_0r$, $S_0pS_0t$,
- $S_1wS_1t$: $S_1wS_1t$, $S_1pS_1t$, $S_1pS_1t$,
- $S_1wS_1r$: $S_1wS_1r$, $S_1pS_1r$, $S_1pS_1t$,
- $S_0wS_0r$: $S_0wS_0r$, $S_0pS_0r$, $S_0pS_1t$.

Trigram
- $S_0wS_0pS_0t$: $S_0wS_0pS_0t$, $S_0wS_0pS_0t$, $S_0wS_0pS_0t$,
- $S_0wS_0pS_0r$: $S_0wS_0pS_0r$, $S_0wS_0pS_0r$, $S_0wS_0pS_0r$,
- $S_0wS_0pS_0r$: $S_0wS_0pS_0r$, $S_0wS_0pS_0r$, $S_0wS_0pS_0r$.

Figure 4: Example partial tree. Words in the same sub dependency trees are grouped by rounded boxes. Word indices do not specify their orders. Base phrases (e.g. Dr. Talcott) are treated as single words.

Table 2: Feature templates.

represent a POS-tag. The feature templates can be classified into four types: unigram, bigram, trigram and linearization. The first three types are taken from the dependency parser of Zhang and Nivre (2011), which capture context information for $S_0$, $S_1$ and their modifiers. The original feature templates of Zhang and Nivre (2011) also contain information of the front words on the buffer. However, since the buffer is unordered for linearization, we do not include these features.

The linearization feature templates are specific for linearization, and captures surface n-gram information. Each search state represents a partially linearized sentence. We represent the last word in the partially linearized sentence as $w_0$ and the second last as $w_{-1}$.

Given a set of labeled training examples, the averaged perceptron (Collins, 2002) with early update (Collins and Roark, 2004; Zhang and Nivre, 2011) is used to train the parameters $\theta$ of the model.

3.2 Input Syntactic Constraints

The use of syntactic constraints to achieve better linearization performance has been studied in previous work. Wan et al. (2009) employ POS constraints in learning a dependency language model. Zhang and Clark (2011b) take supertags as constraints to a CCG linearizer. Zhang (2013) demonstrates the possibility of partial-tree linearization, which allows a whole spectrum of input syntactic constraints. In practice, input syntactic constraints, including POS and dependency relations, can be obtained from earlier stage of a generation pipeline, such as lexical transfer results in machine translation.

It is relatively straightforward to apply input constraints to a best-first system (Zhang, 2013), but less so for beam-search. In this section, we utilize the input syntactic constraints by letting the information decide the possible actions for each state, namely the return value of GetPossibleActions in Algorithm 1, thus, when input POS-tags and dependencies are given, the generation system can achieve more specified outputs.

3.2.1 POS Constraints

POS is the simplest form of constraints to the transition-based linearization system. When the POS of an input word is given, the POS-tag component in SHIFT-Word-POS operation is fixed, and the number of SHIFT actions for the word is reduced from the number of all POS to 1.

3.2.2 Partial Tree Constraints

In partial tree linearization, a set of dependency arcs that form a partial dependency tree is given to the linearization system as input constraints. Figure 4 illustrate an example. The search space can be reduced by ignoring the transition sequences that do not result in a dependency tree that is consistent with the input constraints. Take the partial tree in Figure 4 for example. At the state $s = ([Harvard University_{3}]', set(1..n)\{-5\}, 0)$, it is illegal to shift the base phrase a team_{3} onto the stack, be-
Algorithm 2: \textsc{GetPossibleActions} for partial tree linearization, where \( C \) is a partial tree

\textbf{Input:} A state \( s = ([\sigma | j i], \rho, A) \) and partial tree \( C \)

\textbf{Output:} A set of possible transition actions \( T \)

1. if \( s.\sigma \) is empty then
   2. for \( k \in s.\rho \) do
   3. \( T \leftarrow T \cup (\text{SHIFT}, \text{POS}, k) \)
4. else
   5. if REDUCABLE\((s, i, j, C)\) then
   6. \( T \leftarrow T \cup (\text{LEFTARC}) \)
   7. if REDUCABLE\((s, j, i, C)\) then
   8. \( T \leftarrow T \cup (\text{RIGHTARC}) \)
   9. for \( k \in s.\beta \) do
   10. if SHIFT\textsc{LEGAL}\((s, k, C)\) then
   11. \( T \leftarrow T \cup (\text{SHIFT}, \text{POS}, k) \)
12. return \( T \)

---

Figure 5: Two conditions for a valid \textsc{LeftArc} action in partial-tree linearization. The indices correspond to those in Figure 4. A shaded triangle represents the readily built arcs under a root word.

cause this action will result in a sub-sequence (Harvard University, a team3, of4), which cannot have the dependency arcs \{3 \rightarrow 4\}, \{4 \rightarrow 5\} by using \textsc{arc-standard} actions.

Algorithm 3 shows pseudocode of \textsc{GetPossibleActions} when \( C \) is a partial tree. Given a state \( s = ([\sigma | j i], \rho, A) \) the \textsc{LeftArc} action builds an arc \( \{j \leftarrow i\} \) and pops the word \( j \) off the stack. Since the popped word \( j \) cannot be linked to any words in future transitions, all the descendants of \( j \) should have been processed and removed from the stack. In addition, constrained by the given partial tree, the arc \( \{j \leftarrow i\} \) should be an arc in \( C \) (Figure 5a), or \( j \) should be the root of a sub dependency tree in \( C \) (Figure 5b). We denote the conditions as REDUCABLE\((s, i, j, C)\) (lines 5-6). The case for \textsc{RightArc} is similar to \textsc{LeftArc} (lines 7-8).

For the \textsc{shift} action, the conditions are more complex. Due to space limitation, we briefly sketch the \textsc{shift\textsc{Legal}} function below. Detailed algorithm pseudocode for \textsc{shift\textsc{Legal}} is given in the supplementing material. For a word \( k \) in \( \rho \) to be shifted onto the stack, all the words on the stack must satisfy certain constraints. There are 5 possible relations between \( k \) and a word \( l \) on the stack.

1. If \( l \) is a child of \( k \) in \( C \) (Figure 6a), all the words on the stack from \( l \) to the top of the stack should be reducable to \( k \), because only \textsc{LeftArc} can be applied between \( k \) and these words in future actions.
2. If \( l \) is a grandchild of \( k \) (Figure 6b), no legal sentence can be constructed if \( k \) is shifted onto the stack.
3. If \( l \) is the parent of \( k \) (Figure 6c), legal \textsc{Shifts} require all the words on the stack from \( l \) to the top to be reducable to \( k \).
4. If \( l \) is a grandparent of \( k \), all the words on the stack from \( l \) to the top will become descendants of \( l \) in the output (Figure 6e).
5. If \( l \) is a siblings of \( k \), we denote \( a \) as the least common ancestor of \( k \) and \( l \). \( a \) will become in the buffer and \( l \) should be a direct child of \( a \). All the words from \( l \) to the top of the stack should be the descendants of \( a \) in the output (Figure 6d), and thus \( a \) should have the same conditions as in (4).

Finally, if no word on the stack is in the same subdependency tree as \( k \) in \( C \), then \( k \) can be safely shifted.
Algorithm 3: GETPOSSIBLEACTIONS for full tree linearization, where \( C \) is a full tree

**Input:** A state \( s = ([\sigma]_i, \rho, A) \) and gold tree \( C \)

**Output:** A set of possible transition actions \( T \)

1. \( T \leftarrow \emptyset \)
2. if \( s.\sigma \) is empty then
   3. for \( k \in s.\rho \) do
      4. \( T \leftarrow T \cup (\text{SHIFT}, \text{POS}, k) \)
3. else if \( \exists j, j \in (\text{DESCENDANTS}(i) \cap s.\rho) \) then
   4. for \( j \in (\text{DESCENDANTS}(i) \cap s.\rho) \) do
      5. \( T \leftarrow T \cup (\text{SHIFT}, \text{POS}, j) \)
6. else if \( \{j \rightarrow i\} \in C \) then
   7. \( T \leftarrow T \cup (\text{RIGHTARC}) \)
7. else if \( \{j \leftarrow i\} \in C \) then
   8. \( T \leftarrow T \cup (\text{LEFTARC}) \)
8. else for \( k \in (\text{SIBLINGS}(i) \cup \text{HEAD}(i)) \cap s.\rho \) do
   9. \( T \leftarrow T \cup (\text{SHIFT}, \text{POS}, k) \)
10. return \( T \)

### 3.2.3 Full Tree Constraints

Algorithm 2 can also be used with full-tree constraints, which are a special case of partial-tree constraints. However, there is a conceptually simpler algorithm that leverages full-tree constraints. Because tree linearization is frequently studied in the literature, we describe this algorithm in Algorithm 3. When the stack is empty, we can freely move any word in the buffer \( \rho \) onto the stack (line 2-4). If not all the descendants of the stack top \( i \) have been processed, the next transition actions should move them onto the stack, so that arcs can be constructed between \( i \) and these words (line 6-8). If all the descendants of \( i \) have been processed, the next action should eagerly build arcs between top two words \( i \) and \( j \) on the stack (line 10-13). If no arc exists between \( i \) and \( j \), the next action should shift the parent word of \( i \) or a word in \( i \)'s sibling tree (line 14-16).

### 4 Experiments

We follow previous work and conduct experiments on the Penn Treebank (PTB), using Wall Street Journal sections 2–21 for training, 22 for development testing and 23 for final testing. Gold-standard dependency trees are derived from bracketed sentences in the treebank using Penn2Malt\(^1\), and base noun phrases are treated as a single word (Wan et al., 2009; Zhang, 2013). The BLEU score (Papineni et al., 2002) is used to evaluate the performance of linearization, which has been adopted in former liter- als (Wan et al., 2009; White and Rajkumar, 2009; Zhang and Clark, 2011b) and recent shared-tasks (Belz et al., 2011). We use our implementation of the best-first system of Zhang (2013), which gives the state-of-the-art results, as the baseline.

#### 4.1 Influence of Beam size

We first study the influence of beam size by performing free word ordering on the development test data. BLEU score curves with different beam sizes are shown in Figure 7. From this figure, we can see that the systems with beam 64 and 128 achieve the best results. However, the 128-beam system does not improve the performance significantly (48.2 vs 47.5), but runs twice slower. As a result, we set the beam size to 64 in the remaining experiments.

#### 4.2 Input Syntactic Constraints

To test the effectiveness of GETPOSSIBLEACTIONS under different input constraints, we follow Zhang (2013) and feed different amounts of POS-tags and dependencies to our transition-based linearization system. Input syntactic constraints are obtained by randomly sampling POS and dependencies from the gold dependency tree. Nine development experiments under different inputs are performed, and the

\(^1\)http://stp.lingfil.uu.se/~nivre/research/Penn2Malt.html
Table 3: Partial-tree linearization results on the development test set. BL – the BLEU score, SP – number of milliseconds to order one sentence. Z13 refers to the best-first system of Zhang (2013).

<table>
<thead>
<tr>
<th></th>
<th>no pos</th>
<th>no dep</th>
<th>50% pos</th>
<th>no dep</th>
<th>all pos</th>
<th>50% pos</th>
<th>all dep</th>
<th>no pos</th>
<th>50% pos</th>
<th>all pos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z13</td>
<td>42.9</td>
<td>4872</td>
<td>43.4</td>
<td>4856</td>
<td>50.5</td>
<td>4790</td>
<td>51.4</td>
<td>4737</td>
<td>52.2</td>
<td>4720</td>
<td>73.3</td>
<td>4600</td>
<td>74.7</td>
<td>4431</td>
<td>76.3</td>
<td>4218</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ours</td>
<td>47.5</td>
<td>155</td>
<td>47.9</td>
<td>119</td>
<td>54.8</td>
<td>132</td>
<td>55.2</td>
<td>91</td>
<td>56.2</td>
<td>41</td>
<td>77.8</td>
<td>40</td>
<td>79.1</td>
<td>28</td>
<td>81.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.3 Comparison with Best-First

The beam-search linearizer takes a very different search strategy compared with best-first search, which affects the error distribution. As mentioned earlier, one problem of best-first is the lack of theoretical guarantee on time complexity. As a result, a time constraint is used and default output can be constructed when no full output is found (White, 2004b; Zhang and Clark, 2011b). This may result in incomplete output sentences and intuitively, this problem is more severe for larger bag of words. In contrast, the transition-based linearization algorithm takes $|2n|$ steps to generate a sentence and thus guarantees to order all the input words. Figure 8 shows the results by comparing the brevity scores (i.e. the number of words in the output divided by the number of words in reference sentence) on different sizes of inputs. Best-search can fail to order all the input words even on bags of 9 – 11 words, and the case is more severe for larger bag of words. On the other hand, the transition-based method uses all the input words to generate output and the brevity score is constant 1. Since the BLEU score consists two parts: the n-gram precision and brevity, this comparison partly explains why the transition-based linearization algorithm achieves higher BLEU scores.

To further compare the difference between the two systems, we evaluate the qualities of projective spans, which are dependency treelets. Both systems build outputs bottom-up by constructing projective spans, and a breakdown of span accuracies against span sizes shows the effects of the different search algorithms. The results are shown in Table 4. According to this table, the best-first system tends to construct smaller spans more precisely, but the recall is relatively lower. Overall, higher F-scores are achieved by the transition-based system.

During the decoding process, the best-first system compares spans of different sizes and expands...
those that have higher scores. As a result, the number of expanded spans do not have a fixed correlation with the size, and there can be fewer but better small spans expanded. In contrast, the transition-based system models transition sequences rather than individual spans, and therefore the distribution of spans of different sizes in each hypothesis resembles that of the training data. Figure 9 verifies the analysis by counting the distributions of spans with respect to the length, in the search algorithms of the two systems and the gold dependency trees. The distribution of the transition-based system is closer to that of gold dependency trees, while the best-first system outputs less smaller spans and more longer ones. This explains the higher precision for the best-first system on smaller spans.

4.4 Final Results

The final results on the test set of Penn Treebank are shown in Table 5. Compared with previous studies, our transition-based linearization system achieves the best results on all the tests. Table 6 shows some example output sentences, when there are no input constraints. For longer sentences, the transition-based method gives noticeably better results.

4.4 Final Results

The input to practical natural language generation (NLG) system (Reiter and Dale, 1997) can range from a bag of words and phrases to a bag of lemmas without punctuation (Belz et al., 2011). The linearization module of this paper can serve as the final stage in a pipeline when the bag of words and their optional syntactic information are given. There has also been work to jointly perform linearization and morphological generation (Song et al., 2014).

Table 6: Example outputs.

5 Related Work

The input to practical natural language generation (NLG) system (Reiter and Dale, 1997) can range from a bag of words and phrases to a bag of lemmas without punctuation (Belz et al., 2011). The linearization module of this paper can serve as the final stage in a pipeline when the bag of words and their optional syntactic information are given. There has also been work to jointly perform linearization and morphological generation (Song et al., 2014).

There has been work on linearization with unlabeled and labeled dependency trees (He et al., 2009; Zhang, 2013). These methods mostly use greedy or best-first algorithms to order each tree node. Our work is different by performing word ordering using a transition process.

Besides dependency grammar, linearization with other syntactic grammars, such as CFG and CCG (White and Rajkumar, 2009; Zhang and Clark, 2011b), has also been studied. In this paper, we adopt the dependency grammar for transition-based linearization. However, since transition-based parsing algorithms has been successfully applied to different grammars, including CFG (Sagae et al., 2005) and CCG (Xu et al., 2014), our linearization method can be applied to these grammars.
6 Conclusion

We studied transition-based syntactic linearization as an extension to transition-based parsing. Compared with best-first systems, the advantage of our transition-based algorithm includes bounded time complexity, and the guarantee to yield full sentences when given a bag of words. Experimental results show that our algorithm achieves improved accuracies, with significantly faster decoding speed compared with a state-of-the-art best-first baseline. We publicly release our code at http://sourceforge.net/projects/zgen/.

For future work, we will study the incorporation of large-scale language models, and the integration of morphology generation and linearization.

Acknowledgments

We thank the anonymous reviewers for their constructive comments. This work was supported by the National Key Basic Research Program of China via grant 2014CB340503 and the Singapore Ministry of Education (MOE) AcRF Tier 2 grant T2MOE201301 and SRG ISTD 2012 038 from Singapore University of Technology and Design.

References


Ryan T McDonald and Fernando CN Pereira. 2006. Online learning of approximate dependency parsing algorithms. In EACL.


