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Abstract 

This paper describes log-linear models for a 
general-purpose sentence realizer based on de-
pendency structures. Unlike traditional realiz-
ers using grammar rules, our method realizes 
sentences by linearizing dependency relations 
directly in two steps. First, the relative order 
between head and each dependent is deter-
mined by their dependency relation. Then the 
best linearizations compatible with the relative 
order are selected by log-linear models. The 
log-linear models incorporate three types of 
feature functions, including dependency rela-
tions, surface words and headwords. Our ap-
proach to sentence realization provides sim-
plicity, efficiency and competitive accuracy. 
Trained on 8,975 dependency structures of a 
Chinese Dependency Treebank, the realizer 
achieves a BLEU score of 0.8874. 

1 Introduction 

Sentence realization can be described as the 
process of converting the semantic and syntactic 
representation of a sentence or series of sen-
tences into meaningful, grammatically correct 
and fluent text of a particular language. 

Most previous general-purpose realization sys-
tems are developed via the application of a set of 
grammar rules based on particular linguistic 
theories, e.g. Lexical Functional Grammar (LFG), 
Head Driven Phrase Structure Grammar (HPSG), 
Combinatory Categorical Grammar (CCG), Tree 
Adjoining Grammar (TAG) etc. The grammar 
rules are either developed by hand, such as those 
used in LinGo (Carroll et al., 1999), OpenCCG 
(White, 2004) and XLE (Crouch et al., 2007), or 
extracted automatically from annotated corpora, 
like the HPSG (Nakanishi et al., 2005), LFG 
(Cahill and van Genabith, 2006; Hogan et al., 
2007) and CCG (White et al., 2007) resources 
derived from the Penn-II Treebank. 

Over the last decade, there has been a lot of in-
terest in a generate-and-select paradigm for sur-
face realization. The paradigm is characterized 
by a separation between realization and selection, 
in which rule-based methods are used to generate 
a space of possible paraphrases, and statistical 
methods are used to select the most likely reali-
zation from the space. Usually, two statistical 
models are used to rank the output candidates. 
One is n-gram model over different units, such as 
word-level bigram/trigram models (Bangalore 
and Rambow, 2000; Langkilde, 2000), or fac-
tored language models integrated with syntactic 
tags (White et al. 2007). The other is log-linear 
model with different syntactic and semantic fea-
tures (Velldal and Oepen, 2005; Nakanishi et al., 
2005; Cahill et al., 2007). 

However, little work has been done on proba-
bilistic models learning direct mapping from in-
put to surface strings, without the effort to con-
struct a grammar. Guo et al. (2008) develop a 
general-purpose realizer couched in the frame-
work of Lexical Functional Grammar based on 
simple n-gram models. Wan et al. (2009) present 
a dependency-spanning tree algorithm for word 
ordering, which first builds dependency trees to 
decide linear precedence between heads and 
modifiers then uses an n-gram language model to 
order siblings. Compared with n-gram model, 
log-linear model is more powerful in that it is 
easy to integrate a variety of features, and to tune 
feature weights to maximize the probability. A 
few papers have presented maximum entropy 
models for word or phrase ordering (Ratnaparkhi, 
2000; Filippova and Strube, 2007). However, 
those attempts have been limited to specialized 
applications, such as air travel reservation or or-
dering constituents of a main clause in German.  

This paper presents a general-purpose realizer 
based on log-linear models for directly lineariz-
ing dependency relations given dependency 
structures. We reduce the generation space by 



two techniques: the first is dividing the entire 
dependency tree into one-depth sub-trees and 
solving linearization in sub-trees; the second is 
the determination of relative positions between 
dependents and heads according to dependency 
relations. Then the best linearization for each 
sub-tree is selected by the log-linear model that 
incorporates three types of feature functions, in-
cluding dependency relations, surface words and 
headwords. The evaluation shows that our realiz-
er achieves competitive generation accuracy. 

The paper is structured as follows. In Section 
2, we describe the idea of dividing the realization 
procedure for an entire dependency tree into a 
series of sub-procedures for sub-trees. We de-
scribe how to determine the relative positions 
between dependents and heads according to de-
pendency relations in Section 3. Section 4 gives 
details of the log-linear model and the feature 
functions used for sentence realization. Section 5 
explains the experiments and provides the results. 

2 Sentence Realization from Dependen-
cy Structure  

2.1 The Dependency Input  

The input to our sentence realizer is a dependen-
cy structure as represented in the HIT Chinese 
Dependency Treebank (HIT-CDT)1. In our de-
pendency tree representations, dependency rela-
tions are represented as arcs pointing from a head 
to a dependent. The types of dependency arcs 
indicate the semantic or grammatical relation-
ships between the heads and the dependents, 
which are recorded in the dependent nodes. Fig-
ure 1 gives an example of dependency tree repre-
sentation for the sentence: 
 

(1) 这 是 武汉 航空 

 this is Wuhan Airline 

 首次 购买 波音 客机 

 first time buy Boeing airliner 
‘This is the first time for Airline Wuhan to buy 
Boeing airliners.’ 

In a dependency structure, dependents are un-
ordered, i.e. the string position of each node is 
not recorded in the representation. Our sentence 
realizer takes such an unordered dependency tree 
as input, determines the linear order of the words 
                                                 
1 HIT-CDT (http://ir.hit.edu.cn) includes 10,000 sentences 
and 215,334 words, which are manually annotated with 
part-of-speech tags and dependency labels. (Liu et al., 
2006a) 

as encoded in the nodes of the dependency struc-
ture and produces a grammatical sentence. As the 
dependency structures input to our realizer have 
been lexicalized, lexical selection is not involved 
during the surface realization. 

2.2 Divide and Conquer Strategy for Linea-
rization 

For determining the linear order of words 
represented by nodes of the given dependency 
structure, in principle, the sentence realizer has 
to produce all possible sequences of the nodes 
from the input tree and selects the most likely 
linearization among them. If the dependency tree 
consists of a considerable number of nodes, this 
procedure would be very time-consuming.  To 
reduce the number of possible realizations, our 
generation algorithm adopts a divide-and-
conquer strategy, which divides the whole tree 
into a set of sub-trees of depth one and recursive-
ly linearizes the sub-trees in a bottom-up fashion. 
As illustrated in Figure 2, sub-trees c and d, 
which are at the bottom of the tree, are linearized 
first, then sub-tree b is processed, and finally 
sub-tree a.  

The procedure imposes a projective constraint 
on the dependency structures, viz. each head 
dominates a continuous substring of the sentence 
realization. This assumption is feasible in the 
application of the dependency-based generation, 
because: (i) it has long been observed that the 
dependency structures of a vast majority of sen-
tences in the languages of the world are projec-
tive (Igor, 1988) and (ii) non-projective depen-
dencies in Chinese, for the most part, are used to 
account for non-local dependency phenomena. 

Figure 1: The dependency tree for the sentence 
“这是武汉航空首次购买波音客机” 

①是(HED)
is 

②这(SBV)
this 

③购买(VOB) 
buy 

④首次(ADV)
first time 

⑤客机(VOB) 
airliner 

⑥航空(SBV)
airline 

⑧武汉(ATT)
Wuhan 

⑦波音(ATT) 
Boeing 



Though non-local dependencies are important for 
accurate semantic analysis, they can be easily 
converted to local dependencies conforming to 
the projective constraint. In fact, we find that the 
10, 000 manually-build dependency trees of the 

HIT-CDT do not contain any non-projective de-
pendencies. 

3 Relative Position Determination 

In dependency structures, the semantic or gram-
matical roles of the nodes are indicated by types 
of dependency relations. For example, the VOB 
dependency relation, which stands for the verb-
object structure, means that the head is a verb 
and the dependent is an object of the verb; the 
ATT relation, means that the dependent is an 
attribute of the head. In languages with fairly 
rigid word order, the relative position between 
the head and dependent of a certain relation is in 
a fixed order. For example in Chinese, the object 
almost always occurs behind its dominating verb; 
the attribute modifier always occurs in front of 
its head word. Therefore, we can draw a conclu-
sion that the relative positions between head and 
dependent of VOB and ATT can be determined 
by the types of dependency relations. 

We make a statistic on the relative positions 
between head and dependent for each dependen-
cy relation type. Following (Covington, 2001), 
we call a dependent that precedes its head prede-
pendent, a dependent that follows its head post-
dependent. The corpus used to gather appropriate 
statistics is HIT-CDT. Table 1 gives the numbers 

①是(HED) 
is 

②这(SBV) 
this 

这   是   武汉航空首次购买波音客机 

③  
③购买(VOB) 

buy 

④首次(ADV)
first time 

⑤  ⑥  

武汉航空   首次   购买   波音客机 

⑤客机(VOB)
airliner 

⑦波音(ATT)
Boeing 

波音   客机

⑥航空(SBV) 
Airline 

⑧武汉(ATT) 
Wuhan 

武汉   航空 

sub-tree a 

sub-tree b 

sub-tree c sub-tree d 

Figure 2: Illustration of the linearization procedure 

Relation Description Postdep. Predep.
ADV adverbial 1 25977
APP appositive 807 0
ATT attribute 0 47040
CMP complement 2931 3
CNJ conjunctive 0 2124
COO coordinate 6818 0
DC dep. clause 197 0
DE DE phrase 0 10973
DEI DEI phrase 131 3
DI DI phrase 0 400
IC indep.clause 3230 0
IS indep.structure 125 794

LAD left adjunct 0 2644
MT mood-tense 3203 0
POB prep-obj 7513 0
QUN quantity 0 6092
RAD right adjunct 1332 1
SBV subject-verb 6 16016
SIM similarity 0 44
VOB verb-object 23487 21
VV verb-verb 6570 2

Table 1: Numbers of pre/post-dependents for each 
dependency relation 



of predependent/postdependent for each type of 
dependency relations and its descriptions. 

Table 1 shows that 100% dependents of ATT 
relation are predependents and 23,487(99.9%) 
against 21(0.1%) VOB dependents are postde-
pendents. Almost all the dependency relations 
have a dominant dependent type—predependent 
or postdependent. Although some dependency 
relations have exceptional cases (e.g. VOB), the 
number is so small that it can be ignored. The 
only exception is the IS relation, which has 
794(86.4%) predependents and 125(13.6%) 
postdependents. The IS label is an abbreviation 
for independent structure. This type of depen-
dency relation is usually used to represent inter-
jections or comments set off by brackets, which 
usually has little grammatical connection with 
the head. Figure 3 gives an example of indepen-
dent structure. This example is from a news re-
port, and the phrase “新华社消息” (set apart by 
brackets in the original text) is a supplementary 
explanation for the source of the news. The con-
nection between this phrase and the main clause 
is so weak that either it precedes or follows the 
head verb is acceptable in grammar. However, 
this kind of news-source-explanation is customa-
ry to place at the beginning of a sentence in Chi-
nese. This can probably explain the majority of 
the IS-tagged dependents are predependents. 

If we simply treat all the IS dependents as pre-
dependents, we can assume that every dependen-
cy relation has only one type of dependent, either 
predependent or postdependent. Therefore, the 
relative position between head and dependent 
can be determined just by the types of dependen-
cy relations. 

In the light of this assumption, all dependents 
in a sub-tree can be classified into two groups—
predependents and postdependents. The prede-
pendents must precede the head, and the postde-
pendents must follow the head. This classifica-
tion not only reduces the number of possible se-
quences, but also solves the linearization of a 
sub-tree if the sub-tree contains only one depen-
dent, or two dependents of different types, viz. 
one predependent and one postdependent. In sub-
tree c of Figure 2, the dependency relation be-

tween the only dependent and the head is ATT, 
which indicates that the dependent is a prede-
pendent. Therefore, node 7 is bound to precede 
node 5, and the only linearization result is “武汉

航空”. In sub-tree a of the same figure, the clas-
sification for SBV is predependent, and for VOB 
is postdependent, so the only linearization is 
<node 2, node 1, node 3>.  

In HIT-CDT, there are 108,086 sub-trees in 
the 10,000 sentences, 65% sub-trees have only 
one dependent, and 7% sub-trees have two de-
pendents of different types (one predependent 
and one postdependent). This means that the 
relative position classification can deterministi-
cally linearize 72% sub-trees, and only the rest 
28% sub-trees with more than one predependent 
or postdependent need to be further determined. 

4 Log-linear Models 

We use log-linear models for selecting the se-
quence with the highest probability from all the 
possible linearizations of a sub-tree. 

4.1 The Log-linear Model 

Log-linear models employ a set of feature func-
tions to describe properties of the data, and a set 
of learned weights to determine the contribution 
of each feature. In this framework, we have a set 
of M feature functions Mmtrhm ,...,1),,( = . 
For each feature function, there exists a model 
parameter Mmtrm ,...,1),,( =λ  that is fitted to 
optimize the likelihood of the training data. A 
conditional log-linear model for the probability 
of a realization r given the dependency tree t, has 
the general parametric form 
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And Y(t) gives the set of all possible realizations 
of the dependency tree t. 

4.2 Feature Functions 

We use three types of feature functions for cap-
turing relations among nodes on the dependency 
tree. In order to better illustrate the feature func-
tions used in the log-linear model, we redraw 
sub-tree b of Figure 2 in Figure 4. Here we as-
sume the linearizations of sub-tree c and d have 

Figure 3: Example of independent structure 

①严重(HED) 
serious 

②新华社消息(IS) 
Xinhua news 

③南方雪灾(SBV) 
southern snowstorm 



been finished, and the strings of linearizing re-
sults are recorded in nodes 5 and 6. 

The sub-tree in Figure 4 has two predepen-
dents (SBV and ADV) and one postdependent 
(VOB). As a result of this classification, the only 
two possible linearizations of the sub-tree are 
<node 4, node 6, node 3, node 5> and <node 6, 
node 4, node 3, node 5>. Then the log-linear 
model that incorporates three types of feature 
functions is used to make further selection. 
Dependency Relation Model: For a particular 
sub-tree structure, the task of generating a string 
covered by the nodes on the sub-tree is equiva-
lent to linearizing all the dependency relations in 
that sub-tree. We linearize the dependency rela-
tions by computing n-gram models, similar to 
traditional word-based language models, except 
using the names of dependency relations instead 
of words. For the two linearizations of Figure 4, 
the corresponding dependency relation sequences 
are “ADV SBV VOB VOB” and “SBV ADV 
VOB VOB”. The dependency relation model 
calculates the probability of dependency relation 
n-gram P(DR) according to Eq.(3). The probabil-
ity score is integrated into the log-linear model as 
a feature.  
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Word Model: We integrate an n-gram word 
model into the log-linear model for capturing the 
relation between adjacent words. For a string of 
words generated from a possible sequence of 
sub-tree nodes, the word models calculate word-
based n-gram probabilities of the string. For ex-
ample, in Figure 4, the strings generated by the 

two possible sequences are “武汉航空 首次 购
买 波音客机” and “首次 武汉航空 购买 波音客

机”. The word model takes these two strings as 
input, and calculates the n-gram probabilities. 
Headword Model: 2 In dependency representa-
tions, heads usually play more important roles 
than dependents. The headword model calculates 
the n-gram probabilities of headwords, without 
regard to the words occurring at dependent nodes, 
in that dependent words are usually less impor-
tant than headwords. In Figure 4, the two possi-
ble sequences of headwords are “航空 首次 购
买  客机” and “首次  航空  购买  客机”. The 
headword strings are usually more generic than 
the strings including all words, and thus the 
headword model is more likely to relax the data 
sparseness. 
   Table 2 gives some examples of all the features 
used in the log-linear model. The examples listed 
in the table are features of the linearization 
<node 6, node 4, node 3, node 5>, extracted from 
the sub-tree in Figure 4. 

In this paper, all the feature functions used in 
the log-linear model are n-gram probabilities. 
However, the log-linear framework has great 
potential for including other types of features. 

4.3 Parameter Estimation 

BLEU score, a method originally proposed to 
automatically evaluate machine translation quali-
ty (Papineni et al., 2002), has been widely used 
as a metric to evaluate general-purpose sentence 
generation (Langkilde, 2002; White et al., 2007; 
Guo et al. 2008, Wan et al. 2009). The BLEU 
measure computes the geometric mean of the 
precision of n-grams of various lengths between 
a sentence realization and a (set of) reference(s).  

To estimate the parameters ),...,( 1 Mλλ  for the 
feature functions ),...,( 1 Mhh , we use BLEU3 as 
optimization objective function and adopt the 
approach of minimum error rate training 

                                                 
2 Here the term “headword” is used to describe the word 
that occurs at head nodes in dependency trees.  
3 The BLEU scoring script is supplied by NIST Open Ma-
chine Translation Evaluation at 
ftp://jaguar.ncsl.nist.gov/mt/resources/mteval-v11b.pl 

Feature function Examples of features 
Dependency Relation “SBV ADV VOB”  “ADV VOB VOB” 

Word Model “武汉航空首次” “航空首次购买” “首次购买波音”“购买波音客机”
Headword Model “航空首次” “首次购买” “购买客机” 

Table 2: Examples of feature functions 

③购买(VOB) 
buy 

④首次(ADV) 
first time 

⑤客机(VOB) 
airliner 

“波音客机” 
airliners of Boeing 

⑥航空(SBV)
Airline 

“武汉航空” 
Airline Wuhan

Figure 4: Sub-tree with multiple predependents



(MERT), which is popular in statistical machine 
translation (Och, 2003).   

4.4 The Realization Algorithm 

The realization algorithm is a recursive proce-
dure that starts from the root node of the depen-
dency tree, and traverses the tree by depth-first 
search. The pseudo code of the realization algo-
rithm is shown in Figure 5. 

5 Experiments 

5.1 Experimental Design 

Our experiments are carried out on HIT-CDT. 
We randomly select 526 sentences as the test set, 
and 499 sentences as the development set for 
optimizing the model parameters. The rest 8,975 
sentences of the HIT-CDT are used for training 
of the dependency relation model. For training of 
word models, we use the Xinhua News part 
(6,879,644 words) of Chinese Gigaword Second 
Edition (LDC2005T14), segmented by the Lan-
guage Technology Platform (LTP) 4 . And for 
training the headword model, we use both the 
HIT-CDT and the HIT Chinese Skeletal Depen-
dency Treebank (HIT-CSDT). HIT-CSDT is a 

                                                 
4 http://ir.hit.edu.cn/demo/ltp  

component of LTP and contains 49,991 sen-
tences in dependency structure representation 
(without dependency relation labels). 

As the input dependency representation does 
not contain punctuation information, we simply 
remove all punctuation marks in the test and de-
velopment sets. 

5.2 Evaluation Metrics 

In addition to BLEU score, percentage of exactly 
matched sentences and average NIST simple 
string accuracy (SSA) are adopted as evaluation 
metrics. The exact match measure is percentage 
of the generated string that exactly matches the 
corresponding reference sentence. The average 
NIST simple string accuracy score reflects the 
average number of insertion (I), deletion (D), and 
substitution (S) errors between the output sen-
tence and the reference sentence. Formally, SSA 
= 1 – (I + D + S) / R, where R is the number of 
tokens in the reference sentence. 

5.3 Experimental Results 

All the evaluation results are shown in Table 3. 
The first experiment, which is a baseline experi-
ment, ignores the tree structure and randomly 
chooses position for every word. From the 
second experiment, we begin to utilize the tree 
structure and apply the realization algorithm de-
scribed in Section 4.4. In the second experiment, 
predependents are distinguished from postdepen-
dents by the relative position determination me-
thod (RPD), then the orders inside predependents 
and postdependents are chosen randomly. From 
the third experiments, the log-linear models are 
used for scoring the generated sequences, with 
the aid of three types of feature functions as de-
scribed in Section 4.2. First, the feature functions 
of trigram dependency relation model (DR), bi-
gram word model (Bi-WM), trigram word model 
(Tri-WM) (with Katz backoff) and trigram 
headword model (HW) are used separately in 
experiments 3-6. Then we combine the feature 

1:procedure SEARCH 
2:input: sub-tree T {head:H dep.:D1…Dn} 
3:  if n = 0 then return 
4:  for i := 1 to n 
5:    SEARCH(Di) 
6:  Apre := {} 
7:  Apost := {} 
8:  for i := 1 to n 
9:    if PRE-DEP(Di) then Apre:=Apre∪{Di} 
10:   if POST-DEP(Di) then Apost:=Apost∪{Di} 
11: for all permutations p1 of Apre 
12:   for all permutations p2 of Apost 
13:     sequence s := JOIN(p1,H,p2) 
14:     score r := LOG-LINEAR(s) 
15:     if best-score(r) then RECORD(r,s) 

Figure 5: The algorithm for linearizations of sub-
trees 

 Model BLEU ExMatch SSA 
1 Random 0.1478 0.0038 0.2044 
2 RPD + Random 0.5943 0.1274 0.6369 
3 RPD + DR 0.7204 0.2167 0.7683 
4 RPD + Bi-WM 0.8289 0.4125 0.8270 
5 RPD + Tri-WM 0.8508 0.4715 0.8415 
6 RPD + HW 0.7592 0.2909 0.7638 
7 RPD + DR + Bi-WM 0.8615 0.4810 0.8723 
8 RPD + DR + Tri-WM 0.8772 0.5247 0.8817 
9 RPD + DR + Tri-WM + HW 0.8874 0.5475 0.8920 

Table 3: BLEU, ExMatch and SSA scores on the test set 



functions incrementally based on the RPD and 
DR model. 

The relative position determination plays an 
important role in the realization algorithm. We 
observe that the BLEU score is boosted from 
0.1478 to 0.5943 by using the RPD method. This 
can be explained by the reason that the lineariza-
tions of 72% sub-trees can be definitely deter-
mined by the RPD method. All of the four fea-
ture functions we have tested achieve considera-
ble improvement in BLEU scores. The depen-
dency relation model achieves 0.7204, the bi-
gram word model 0.8289, the trigram word mod-
el 0.8508 and the headword model achieves 
0.7592. While the combined models perform bet-
ter than any of their individual component mod-
els. On the foundation of relative position deter-
mination method, the combination of dependen-
cy relation and bigram word model achieves a 
BLEU score of 0.8615, and the combination of 
dependency relation and trigram word model 
achieves a BLEU score of 0.8772. Finally the 
combination of dependency relation model, tri-
gram word model and headword model achieves 
the best result 0.8874.  

5.4 Discussion 

We first inspected the errors made by the relative 
position determination method. In the treebank-
tree test set, there are 7 predependents classified 
as postdependents and 3 postdependents classi-
fied as predependents by error. Among the 9,384 
dependents, the error rate of the relative position 
determination method is very small (0.1%). 

Then we make a classification on the errors in 
the experiment of dependency relation model 
(with relative position determination method). 
Table 4 shows the distribution of the errors. 

The first type of errors is caused by duplicate 
dependency relations, i.e. a head with two or 
more dependents that have the same dependency 
relations. In this situation, only using the depen-
dency relation model cannot generate the right 
linearization. However, word models, which util-
ize the word information, can make distinctions 
between the dependencies. The reason for the 
errors of SBV-ADV and ATT-QUN is probably 
because the order of these pairs of grammar roles 

is somewhat flexible. For example, the strings of 
“今天(ADV)/today 我(SBV)/I” and “我(SBV)/I 
今天(ADV)/today” are both very common and 
acceptable in Chinese. 

The word models tend to combine the nodes 
that have strong correlation together. For exam-
ple in Figure 6, node 2 is more likely to precede 
node 3 because the words “保护 /protect” and 
“未来 /future” have strong correlation, but the 
correct order is <node 3, node 2>. 

Headword model only consider the words oc-
cur at head nodes, which is helpful in the situa-
tion like Figure 6. In our experiments, the head-
word model gets a relatively low performance by 
itself, however, the addition of headword model 
to the combination of the other two feature func-
tions improves the result from 0.8772 to 0.8874. 
This indicates that the headword model is com-
plementary to the other feature functions. 

6 Conclusions 

We have presented a general-purpose realizer 
based on log-linear models, which directly maps 
dependency relations into surface strings. The 
linearization of a whole dependency tree is di-
vided into a series of sub-procedures on sub-trees. 
The dependents in the sub-trees are classified 
into two groups, predependents or postdepen-
dents, according to their dependency relations. 
The evaluation shows that this relative position 
determination method achieves a considerable 
result. The log-linear model, which incorporates 
three types of feature functions, including de-
pendency relation, surface words and headwords, 
successfully captures factors in sentence realiza-
tion and demonstrates competitive performance.  
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future 
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