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Abstract. In this paper, we apply a bidirectional Long Short-Term Memory with
a Conditional Random Field to the task of disfluency detection. Long-range de-
pendencies is one of the core problems for disfluency detection. Our model han-
dles long-range dependencies by both using the Long Short-Term Memory and
hand-crafted discrete features. Experiments show that utilizing the hand-crafted
discrete features significantly improves the model’s performance by achieving the
state-of-the-art score of 87.1% on the Switchboard corpus.
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1 Introduction

Disfluencies are common in automatic speech recognition (ASR). Detecting disfluen-
cies is important for natural language understanding, since most downstream NLU sys-
tems are built on the fluent utterances. Disfluency of a sentence can be categorized into
five classes: uncompleted words, filled pauses (e.g. “uh”, “um”), editing terms (e.g.
“you know”), discourse markers (e.g. “i mean”) and repairs that are discarded, or cor-
rected by its following words (see Fig. 1 for a disfluency example with filled pauses,
discourse markers and repair words). The former four classes of disfluencies are easy

A flight to um
FP
!  Boston

RM
!"#  I mean

IM
!"#  Denver

RP
!"$ #$  Tuesday

Fig. 1. A sentence with disfluencies annotated in the style of [23] and the Switchboard corpus.
FP=Filled Pause, RM=Reparandum, IM=Interregnum, RP=Repair. We follow previous work in
evaluating the system on the accuracy with which it identifies speech-repairs, marked reparandum
above.

to detect as they often consist of fixed phrases (e.g. “uh”, “you know”). While, the re-
pair disfluencies (see Table 1) are more difficult to detect, because they are in arbitrary
form [25]. Most of the previous disfluency detection works focus on detecting the repair
disfluencies.

Modeling long-range dependencies between repair phrases is one of the core prob-
lems for detecting the repair disfluencies. Previous sequence tagging methods [5, 6, 21]
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Table 1. Repair disfluency sentences. “/E” means that the word belong to a repair and should be
deleted.

they/E had/E they/E used/E to/E have/E well they do have television monitors stationed
throughout our buildings.
and the/E other/E one/E is/E her husband is in the navy.
they/E in/E fact/E they/E just/E it was just a big thing recently.

require carefully designed features to capture information of long distance, but usu-
ally suffer sparsity problem. Another line of syntax-based disfluency detection work
[9, 25] try to model the repair phrases on a syntax tree by compressing the unrelated
phrases and allowing repair phrases to interact with each other. However, data that both
have syntax tree and disfluency annotation is scarce. The performance of syntax parsing
models (about 92% on English) also hinders the disfluency detection’s performance. Re-
current neural network (RNN), which can capture dependencies at any length, has been
successfully applied to many NLP tasks, including NER [11] and opinion mining [12].
There is also work that tried to use RNN in disfluency detection problem [10]. However,
in term of solving long-range dependencies, [10] overly relies on the RNN itself and
doesn’t adopt the hand-craft discrete features which has shown effective in previous
work [26]. Further more, [10] treats sequence tagging as classification on each input
token and doesn’t model the transition between tags which is important for recognizing
the repair phrases of multi-words.

In this paper, we follow the sequence tagging work and combine CRF and RNN to
solve the disfluency detection problem. More specifically, we use a bidirectional Long
Short-Term Memory (BI-LSTM) network to encode the words and feed the output to
a linear-chained CRF to model the probability of tag sequence, thus result in a BI-
LSTM-CRF model. We also study the problem of adopting the hand-crafted discrete
features into BI-LSTM-CRF model. We evaluate our model on the English Switchboard
corpus. The results show that our model outperforms previous stat-of-the-art systems
by achieving a 87.1% F-score.

2 BI-LSTM-CRF Model

RNN has been employed to produce state-of-the-art results on a variety of tasks [11,
12]. It takes a sequence of input (x1, x2, ..., xn

) and returns a sequence (h1, h2, ..., hn

)
in which h

t

encodes the information in ranging from x1 to x

t

. In theory, RNN can
capture dependencies of the inputs at any length with a hidden layer that memorizes
the historical information. Unfortunately, in practice, it fails due to the gradient var-
nishing/exploding problems [1, 20]. Long Short-Term Memory (LSTM) [8] as a variant
of RNN is designed to cope with the gradient varnishing problems. It addresses the
varnishing problems with an extra memory “cell” c

t

that is constructed as a linear com-
bination of the previous state and input signal. LSTM cells process the inputs with three
multiplicative gates which control the proportions of information to forget and to pass
on to the next time step. A LSTM memory cell is calculated as:
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Fig. 2. Main architecture of the BI-LSTM-CRF. Outputs of the hidden layer are given to a CRF
Layer after passing through a Merge Layer.
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where � is the element-wise sigmoid function and � is the element-wise product.
For disfluency detection, it is difficult to predict a word as disfluency by only consid-

ering its past contexts, because disfluent phrases of this word can occur before or after
it. A good model should access to both the past and the future contexts for disfluency
detection. In this paper, we encode the past and the future information with BI-LSTM
[15]. In the BI-LSTM, the past information is represented with a forward LSTM and the
future with a backward LSTM respectively. The hidden states from these two LSTMs
are concatenated to form the final output.

h

t

can be used to make independent classification on each token to do the disfluency
tagging. But such classification scheme is limited when there are strong dependencies
between output tags. Disfluency detection is one of the tasks that strong dependencies
exist between tags because one repair phase can have multi-words. Instead of modeling
tagging decisions independently, we model them jointly using a CRF layer [11, 14, 15,
18]. Fig. 2 illustrates the architecture of BI-LSTM-CRF in detail. For an input sentence
X = (x1, x2, ..., xn

), we define P 2 R

n⇥k to be the matrix of scores output by the
BI-LSTM network, where k is the number of tags and P

i,j

corresponds to the score of
x

i

tagged as j. We also define A 2 R

k⇥k to be the matrix of transition scores that A
i,j

is the score of a transition from tag i to tag j. For a sequence of tags y = (y1, y2, ..., yn),
its score is defined as

s(X, y) =
nX

i=0

A

yi,yi+1 +
nX

i=1

P

i,yi

and its probability is defined as
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Table 2. Discrete features used in the BI-LSTM and BI-LSTM-CRF networks. p is the POS tag.
w is the word. Duplicate indicates if the two units are same. fuzzyMatch indicates the similarity
of two words

duplicate features
Duplicate(wi, wi+k),�15  k  +15 and k 6= 0: if wi equals wi+k, the value is 1, others 0
Duplicate(pi, pi+k),�15  k  +15 and k 6= 0: if pi equals pi+k, the value is 1, others 0
Duplicate(wiwi+1, wi+kwi+k+1),�4  k  +4 and k 6= 0: if wiwi+1 equals wi+kwi+k+1,

the value is 1, others 0
Duplicate(pipi+1, pi+kpi+k+1), �4  k  +4 and k 6= 0: if pipi+1 equals pi+kpi+k+1,

the value is 1, others 0
similarity features
fuzzyMatch(wi, wi+k), k 2 {�1,+1}:

similarity = num same letters/(len(wi) + len(wi+k)).
if similarity > 0.8, the value is 1, others 0

p(y|X) = exp{s(X,y)}P
ey2YX

exp{s(X,ey)}

where Y

X

represents all possible tag sequences of the input sequence X . To learn pa-
rameters of the BI-LSTM and the transition matrix A, we minimize the negative log-
probability of the correct tag sequence over the input data {(X(n)

, y

(n))}N
n=1 during

training:

�
NX

n=1

log(p(y(n)|X(n))) = �
NX

n=1

 
s(X(n)

, y

(n))�log
 

X

ey2Y

X(n)

exp{s(X(n)
, ey)}

!!

While decoding, we predict the highest-scored output sequence using dynamic pro-
gramming.

3 Utilizing Hand-crafted Features

Previous studies [5, 21] show that hand-crafted features are very effective for achiev-
ing good disfluency detection performance, especially those features that capture the
duplication between phrases. In this paper, We use two kinds of hand-crafted discrete
features as shown in Table 2 and incorporate them into our neural networks by trans-
lating them into a 0-1 vector d. The dimension of d is 78, which equals to the number
of discrete features. For a token x

t

, d
i

fires if x
t

matches the i-th pattern of the feature
templates. The duplicate features care whether x

t

has a duplicated word/pos in certain
distance. The similarity features care whether the surface string of x

t

resembles its sur-
rounding words.
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Fig. 3. Two methods of combining discrete features and continuous neural features. ew is a pre-
trained embedding of current word. w is a learned embedding of current word; p is a learned
embedding of current POS tag of the word; d is a continuous embedding of discrete features.

�!
ht

is the output of the forward LSTM.
 �
ht is the output of the backward LSTM

In this paper, we try two different methods to incorporate the hand-crafted discrete
features d. In the first method, we treat d as an input to the LSTM along with the fin-
tune word embedding w, fixed word embedding ew and POS-tag embedding p. These
four parts are concatenated together, transformed by a matrix V and fed to a rectified
layer to learn feature combination, as

x = max{0, V [ ew;w; p; d] + b}

where [ ew;w; p; d] means the concatenation. This method is shown in Fig. 3(a). By feed-
ing d into LSTM, we allow to encode a long-range of hand-crafted features.

In the second method, we treat d as input to the CRF-layer, along with the outputs
of the forward and the backward LSTMs. Formally, it can be calculated as

x = max{0, V [
�!
h

t

;
 �
h

t

; d] + b}

where
�!
h

t

is the output of the forward LSTM,
 �
h

t

is the output of the backward LSTM.
This method is shown schematically as in Fig. 3(b).

4 Network Training

4.1 Parameters

Pretrained word embedding. There are lots of methods for creating word embed-
dings. As [4] does, we use a variant of the skip n-gram model introduced by [17],
named “structured skip n-gram”, where a different set of parameters are used to predict
each context word depending on its position relative to the target word. The hyperpa-
rameters of the model are the same as in the skip n-gram model defined in word2vec
[19]. We set the window size to 5, and use a negative sampling rate to 10. the AFP
portion of English Gigaword corpus (version 5) is used as the training corpora.
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Hyper-Parameters. Our BI-LSTM and BI-LSTM-CRF models use two hidden lay-
ers for the forward and backward LSTMs whose dimensions are set to 100. Pretrained
word embeddings have 100 dimensions and the learned word embeddings have also
100 dimensions. Pos-tag embeddings have 12 dimensions. The dimensions of labels in
BI-LSTM-CRF are set to 16.
Parameter initialization. The learned parameters in the neural networks are ran-
domly initialized with uniform samples from [�

q
6

r+c

,+
q

6
r+c

], where r and c are
the number of rows and columns in the parameter structure.

4.2 Optimization Algorithm

Parameter optimization. Parameter optimization is performed with stochastic gra-
dient descent (SGD) with an initial learning rate of ⌘0 = 0.1 and a gradient clipping
of 5.0. The learning rate is updated on each epoch of training as ⌘

t

= ⌘0/(1 + ⇢t), in
which t is the number of epoch completed and the decay rate ⇢ = 0.05.
Early Stopping. We use early stopping [7] based on performance on dev sets. The
best parameters appear at around 12 epochs, according to our experiments.
Dropout Training. To reduce overfitting, we apply the dropout method [24] to regu-
larize our model. We apply dropout not only on input and output vectors of BI-LSTM,
but also between different hidden layers of BI-LSTM. We observe a significant im-
provement on model performances after using dropout.
Unknown Word Handling. As described in section 3, the input layer contains a
learned vector representation for the word w and a corresponding fixed pretrained vec-
tor representation ew. We randomly replace the singleton word in the training data with
the UNK token during training, but keep corresponding ew unchanged. This technique
can deal with out-of-vocabulary words.

5 Experiments

5.1 Settings

Dataset. We conduct our experiments on the English Switchboard corpus. Following
the experiment settings in [2, 9, 25], we use directory 2 and 3 in PARSED/MRG/SWBD
as our training set and split directory 4 into test set, development set and others. We ex-
tract the repair disfluencies according to the EDITED label in the Switchboard corpus.
Following [9], we lower-case the text and remove all punctuations and partial words1.
We also discard all the ‘um’ and ‘uh’ tokens and merge ‘you know’ and ‘i mean’ into
single token. Automatic POS tags generated from pocket crf [21] are used as POS-tag
in our experiments.
Metric and Tagging Schemes. Following previous works [5, 25], token-based preci-
sion (P), recall (R), and F-score (F1) are used as the evaluation metrics. We use BIESO
tagging scheme in our experiments.

1 words are recognized as partial words if they are tagged as ‘XX’ or end with ‘-’
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Table 3. Experimental results on the development and test data for investigating the effect of
CRF-layer.

Method
Dev Test

P R F1 P R F1
CRF 93.8% 77.7% 85.0% 92.0% 74.5% 82.3%
BI-LSTM 94.0% 71.0% 80.9% 93.2% 70.3% 80.1%
BI-LSTM-CRF 94.8% 71.1% 81.3% 94.0% 71.3% 81.1%

5.2 Effect of CRF-layer

To investigate the effect of combining BI-LSTM and CRF, we build the following sys-
tems:

– CRF: a baseline system and the hand-crafted discrete features are the same with
those in [5]. Note that the hand-crafted features in Table 2 are contained in the CRF
model

– BI-LSTM: model that encodes word and POS-tag with BI-LSTM and use the output
of the merge layer in Fig. 2 as features for a logistic classifier.

– BI-LSTM-CRF: model that takes the same input as BI-LSTM but compute the
probability of tag sequence with a CRF layer.

Table 3 shows that BI-LSTM-CRF achieves significant improvements over BI-LSTM
by adding CRF layer for joint decoding. This result demonstrates the necessary of han-
dling the label bias problem in disfluency detection. We also note that the CRF with rich
hand-crafted discrete features outperforms the BI-LSTM-CRF with only continuous
neural features. A natural question that arises from this contrast is whether hand-crafted
discrete features and continuous neural features can be integrated for better accuracies.
We will study it in next section.

5.3 Effect of Hand-crafted Features

Based on the BI-LSTM-CRF, we compare two methods of combining hand-crafted dis-
crete features and continuous neural features. In Table 4, “-HIDDEN” means combin-
ing hand-crafted discrete features with hidden outputs of BI-LSTM. “-INPUT” means
combining discrete feature embeddings with POS-tag and word embedding to the input
layer. From the result of Table 4, both the BI-LSTM-CRF-HIDDEN and the BI-LSTM-
CRF-INPUT outperform the BI-LSTM-CRF by a large margin. The result confirms
that hand-crafted discrete features and continuous neural features can be integrated
to achieve better performance. By comparing two methods of combining hand-crafted
discrete features, BI-LSTM-CRF-INPUT achieves better performance than BI-LSTM-
CRF-HIDDEN. We attribute it to the fact that BI-LSTM-CRF-INPUT allow the dense
and hand-crafted discrete features to interact with each other by non-linear transforma-
tion and encode the discrete features of long range with LSTM at the same time. We
also test the effect of hand-crafted features on BI-LSTM model and get similar results
with BI-LSTM-CRF.
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Table 4. Experimental results on the development and test data for investigating the effect of
integrating hand-crafted features.

Method
Dev Test

P R F1 P R F1
CRF 93.8% 77.7% 85.0% 92.0% 74.5% 82.3%
BI-LSTM 94.0% 71.0% 80.9% 93.2% 70.3% 80.1%
BI-LSTM-HIDDEN 93.1% 78.6% 85.2% 92.9% 76.7% 84.0%
BI-LSTM-INPUT 93.2% 82.6% 87.6% 92.7% 80.6% 86.2%
BI-LSTM-CRF 94.8% 71.1% 81.3% 94.0% 71.3% 81.1%
BI-LSTM-CRF-HIDDEN 93.4% 78.6% 85.4% 91.7% 78.6% 84.6%
BI-LSTM-CRF-INPUT 92.8% 84.3% 88.3% 91.0% 83.6% 87.1%

Table 5. Comparison of our BI-LSTM-CRF with the previous state-of-the-art methods on the test
set.

Method P R F1
BI-LSTM-CRF-INPUT 91.0% 83.6% 87.1%
M3N [21] - - 84.1%
Joint Parser [9] - - 84.1%
semi-CRF [5] 90.1% 80.0% 84.8%
UBT [25] 90.3% 80.5% 85.1%

5.4 Final Result and Comparsion with Previous Work

We compare our best model (BI-LSTM-CRF-INPUT) to four previous top performance
systems. Our method outperforms state-of-the-art work and achieves a 87.1% F-score
as shown in Table 5. Our model achieves 2 point improvements over UBT [25], which is
the best syntax-based method for disfluency detection. The best performance by linear
statistical sequence labeling methods is the semi-CRF method [5], achieving a 84.8%
F1 score without leveraging prosodic features. Our model beats the semi-CRF model,
obtaining 2.3 point improvements. Note that our method performs better than previous
methods not only on precision , but also on recall. The comparison shows that our model
is a good solution to disfluency detection.

5.5 Ablation Test

To test the individual effectiveness of duplicate features and similarity features, we con-
duct feature ablation experiments for the BI-LSTM-CRF-INPUT model. Table 6 shows
the result. We can see that both the two kinds of features contribute to the performance
improvements of disfluency detection and we can achieve a higher performance by in-
tegrating all of them into BI-LSTM-CRF. This indicates that duplicate features and
similarity features are both important to the BI-LSTM-CRF and they provide different
kinds of information for disfluency detection.



Enhancing Neural Disfluency Detection with Hand-crafted Features 9

Table 6. Results of feature ablation experiments on BI-LSTM-CRF-INPUT models.

Method
Dev Test

P R F1 P R F1
BI-LSTM-CRF 94.8% 71.1% 81.3% 94.0% 71.3% 81.1%
+ Duplicate 94.5% 80.5% 86.9% 93.2% 79.7% 86.0%
+ Similarity 94.9% 73.9 % 83.1% 94.1% 73.6 % 82.6%
+ Duplicate + Similarity 92.8% 84.3% 88.3% 91.0% 83.6 % 87.1%

6 Related Work

Most related works on disfluency detection are aimed at detecting repair type of disflu-
encies. [13] proposed a TAG-based noisy channel model for disfluency detection. The
TAG model was used to find rough copies. Following the work of [13], [27] extended
the TAG model using minimal expected f-loss oriented n-best reranking with additional
corpus for language model training. [21] proposed a muiti-step learning method using
weighted max-margin markov network (M3N). They showed that M3N model outper-
formed many other labeling models such as CRF model. [5] used the Semi-Markov
CRF model for disfluency detection and achieved high F-score by integrating prosodic
features.

Many syntax-based approaches have been proposed which jointly perform depen-
dency parsing and disfluency detection. [16] involved disfluency detection in a PCFG
parser to parse the input along with detecting disfluencies. [22] designed a joint model
for both disfluency detection and dependency parsing. [9] presented a new joint model
by extending the original transition actions with a new “Edit” transition. This model
achieved good performance on both disfluency detection and parsing. [25] proposed a
right-to-left transition-based joint method and achieved the state-of-the-art performance
compared with previous syntax-based approaches.

RNN had been used to disfluency detection. [10] explored incremental detection,
with an objective that combines detection performance with minimal latency. This ap-
proach achieved worse performance compared with other works for the latency con-
straints. [3] used word embeddings learned by an RNN as features in a CRF classifiers.

7 Conclusion and Future Work

In this paper, we have explored an application of BI-LSTM-CRF networks to the task
of disfluency detection. Our method explores the combination of hand-crafted discrete
features and continuous neural features. Experimential result shows that our method
achieves the best reported performance on the English Switchboard corpus.

In the future, we will try to model the task of disfluency detection as a sequence
to sequence learning problem and incorporate character-based representations into the
encoder model. We would also like to jointly model disfluency detection and automatic
punctuation using some neural network.
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