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Semantic Role Labeling Using a Grammar-Driven
Convolution Tree Kernel
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Sheng Li

Abstract—Convolution tree kernel has shown promising results
in semantic role labeling (SRL). However, this kernel does not
consider much linguistic knowledge in kernel design and only
performs hard matching between subtrees. To overcome these
constraints, this paper proposes a grammar-driven convolution
tree kernel for SRL by introducing more linguistic knowledge.
Compared with the standard convolution tree kernel, the proposed
grammar-driven kernel has two advantages: 1) grammar-driven
approximate substructure matching, and 2) grammar-driven
approximate tree node matching. The two approximate matching
mechanisms enable the proposed kernel to better explore lin-
guistically motivated structured knowledge. Experiments on the
CoNLL-2005 SRL shared task and the PropBank I corpus show
that the proposed kernel outperforms the standard convolution
tree kernel significantly. Moreover, we present a composite kernel
to integrate a feature-based polynomial kernel and the proposed
grammar-driven convolution tree kernel for SRL. Experimental
results show that our composite kernel-based method significantly
outperforms the previously best-reported ones.

Index Terms—Dynamic programming, grammar-driven convo-
lution tree kernel, natural languages, semantic role labeling.

I. INTRODUCTION

S EMANTIC parsing maps a natural language sentence into
a formal representation of its meaning. Due to the diffi-

culty in deep semantic parsing, previous work mainly focuses
on shallow semantic parsing, which assigns a simple structure
(such as WHO did WHAT to WHOM, WHEN, WHERE, WHY,
HOW, etc.) to each predicate in a sentence. As a particular case
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Fig. 1. Semantic role labeling in a syntactic tree representation.

of shallow semantic parsing, the well-defined semantic role la-
beling (SRL) issue has been drawing more and more attention in
recent years due to its importance in deep natural language pro-
cessing (NLP) applications, such as question answering [1], in-
formation extraction [2], and coreference resolution [3]. Given a
sentence and each predicate (either a target verb or a noun), SRL
recognizes and maps all the constituents in the sentence into
their corresponding semantic arguments (roles) of the predicate
or non-argument. In PropBank context [4], these semantic argu-
ments include core arguments (e.g., A0 for Agent and A1 for Pa-
tient) and adjuncts (e.g., AM-LOC for Locative and AM-TMP
for Temporal). Fig. 1 shows an example from the PropBank I
corpus on SRL [4]. Given the sentence “She bought the silk in
China.” and the predicate “bought,” a SRL system needs to label
the sentence as “[ She] bought [ the silk] [
in China].”.

Generally, SRL takes a parse tree as input and determines
proper labels for semantic arguments of a given predicate. Given
a sentence and its parse tree, all predicates in the sentence can
be recognized with simple heuristic rules in practice [5], [6],
and for each recognized predicate, their semantic arguments are
identified and labeled independently. From learning algorithm
viewpoint, SRL can be recast as a classification problem and
done in two steps: semantic role identification, which identifies
each syntactic constituent in a sentence as either a semantic
argument of a given predicate or not, and semantic role clas-
sification, which classifies each identified semantic argument
into a specific semantic role. With the availability of large
annotated corpora [4], [7], data-driven techniques, including
both feature-based and kernel-based methods, have been exten-
sively studied for SRL [5], [6]. A feature-based method maps
a single predicate-argument structure1 to a flat feature vector
and computes the similarity between two feature vectors (i.e.,

1A predicate-argument structure is part of a parse tree related with the predi-
cate and the argument, including the predicate word, the argument phrase struc-
ture and the path that links the predicate and the argument.
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two predicate-argument structures) using dot product while,
in kernel-based methods, a kernel function is used to directly
measure the similarity between two predicate-argument struc-
tures without using the feature vector representations (The
kernel trick is introduced in detail in Section IV-A). Although
feature-based methods represent the state-of-the-art and have
achieved much success in SRL, kernel methods have more
potential in capturing structured knowledge than feature-based
methods. Moreover, it is well known that syntactic structure
knowledge in a parse tree plays an important role in SRL and is
thereby worth exploring [8], [9]. Besides SRL, tree kernels have
been applied to much more natural language tasks, including
syntactic parsing reranking [10], relation extraction [11], [12],
named entity recognition [13], [14], etc.

In the literature, various tree kernels have been proposed,
such as the convolution tree kernel [15], the PT kernel [16],
the labeled order tree kernel [17], [18], the path-sensitive parse
tree kernel [11], the path-sensitive dependency tree kernel
[14], the shortest path kernel over dependency trees [19], [20],
and the LTAG-based tree kernel [21]. As a representative tree
kernel, the convolution tree kernel implicitly takes subtrees
as its features and counts the number of common subtrees as
the similarity between two predicate-argument structures. This
kernel was first proposed in [15] for syntactic parsing and has
achieved promising results in SRL [22], [23] and other NLP
applications, such as parsing [15], relation extraction [12], and
question classification in question answering [24]. However,
the tree kernel only performs hard matching between two
subtrees without considering linguistic knowledge. This makes
the kernel fail to handle similar phrase structures (e.g., “buy
a car” versus “buy a red car”) and quasi-synonymic grammar
tags (e.g., the POS variations between “high/JJ degree/NN”
and “higher/JJR degree/NN”).2 In natural language, some
rewrite rules are generalizations of others. For example, “NP

DT JJ NN” is a specialized version of “NP DT NN.”
The same applies to POSs and other grammar tags. However,
the standard convolution tree kernel is unable to capture such
linguistic knowledge. To overcome these shortcomings, the
PT kernel generalizes the standard convolution tree kernel by
allowing partial matching between subtrees. Compared with
the standard convolution tree kernel, the PT kernel generates
much more substructures implicitly. However, evaluation on
SRL [16] shows that the PT kernel performs worse than the
standard convolution tree kernel. It is not surprising due to
its nongrammar-driven nature, and hence allowing many non-
linguistically motivated (normally noisy) substructures to be
generated.

This paper addresses the above-mentioned issues by directly
incorporating linguistic knowledge into the convolution tree
kernel. To the best of our knowledge, this is the first attempt
to integrate linguistic knowledge into a tree kernel (i.e., the
convolution tree kernel in this paper). In particular, we propose
a grammar-driven convolution tree kernel to better explore
linguistically motivated substructures. Experimental results
show that the proposed kernel significantly outperforms the

2Please refer to http://www.cis.upenn.edu/~treebank/ for the detailed defini-
tions of the grammar tags used in the paper.

standard convolution tree kernel on the CoNLL-2005 SRL
shared task [6]. Furthermore, we present a composite kernel to
integrate a state-of-the-art feature-based polynomial kernel and
our grammar-driven tree kernel. Experimental results show that
our composite kernel-based method outperforms previously
best reported ones.

The remainder of the paper is organized as follows: Section II
introduces the public-available SRL corpora. In Section III, we
review the previous work, while Section IV discusses our new
grammar-driven convolution tree kernel. The experimental re-
sults are shown in Section V. Finally, we conclude our work
and present our future work in Section VI.

II. SEMANTIC ANNOTATION AND CORPORA

There are two major kinds of corpora available for semantic
argument annotation: FrameNet [7], which uses predicate spe-
cific labels (such as JUDGE and JUDGEE) in semantic annota-
tion (called frames) and PropBank [4], [25], which uses pred-
icate independent labels (such as A0, A1). FrameNet can be
viewed as the application of frame semantics [26] in the an-
notation of predicate argument structures based on frame ele-
ments (semantic role), while PropBank is based on a linguistic
model inspired by Levin’s verb classes [27], focusing on the ar-
gument structure of verbs and on the alternation patterns that de-
scribe movements of verbal arguments within a predicate struc-
ture [28]. Another difference between them is that semantic ar-
guments in PropBank are annotated consistently with their syn-
tactic alternations, while FrameNet roles are assigned according
to semantic considerations rather than syntactic aspects. In this
paper, we will only consider PropBank due to its large scale,
popularity, and compatibility with the Penn TreeBank corpus
[29].

Currently, there are two PropBank style corpora in English,
the PropBank I corpus (LDC2004T14) and the CoNLL 2005
data on the SRL shared task [6] with only two minor differences
between them: 1) the PropBank I corpus considers trace nodes
while the CoNLL 2005 data does not, and 2) the CoNLL 2005
data annotates discontinuous and coreferential arguments while
the PropBank I corpus does not. In this paper, we will focus on
the CoNLL 2005 data, with a few exceptions on the PropBank I
corpus for a fair comparison with related work.

The semantic roles covered by the CoNLL 2005 data are clas-
sified into four clusters [6].

1) Numbered Core Arguments (A0–A5, AA): Arguments
defining verb-specific roles, e.g., A0 (for the agent) and A1
(for the patient or the theme of the proposition). However,
no consistent generalization can be made across different
verbs or even different senses of the same verb for higher
numbered arguments.

2) Adjuncts (AM-): General arguments that any verb may
take optionally. There are 13 types of adjuncts, such as
AM-ADV (for general-purpose adverbs), AM-TMP (for
temporal).

3) References (R-): For arguments realized in other parts of
the sentences.

4) Verbs (V): For the predicate of the proposition.
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For details, please refer to [6, Sec. 3.1], [4, Sec. 3], and [30,
Sec. 2].

III. PREVIOUS WORK

Labeling of semantic roles is important for many NLP appli-
cations. Traditional understanding systems [31] relied on hand-
crafted grammars to realize semantic roles and thus had limited
coverage. Due to the recent availability of large human-anno-
tated corpora, data-driven techniques, including both feature-
based and kernel-based methods, have been extensively studied
in SRL. Normally, SRL is recast as a classification problem in
the literature. That is, in training, the annotated semantic argu-
ment instances are used to learn a classifier while, in testing, the
learned classifier is applied to input instances to determine their
argument classes (including non-argument) and thus label each
possible arguments.

A. Feature-Based Methods for SRL

Feature-based methods rely on a flat feature vector to repre-
sent an object. [32] extracted dozens of basic flat features (such
as Predicate, Phrase Type, Parse Tree Path, Position, Voice,
Head Word, and Verb Sub-Categorization) from a syntactic
parse tree, clustered them into several subsets according to
their linguistic nature and linearly interpolated the contribution
of each feature subset to the SRL task in the FrameNet [7].
Since then, much research work has been pursued to explore
more features (including Constituent-related features, Predi-
cate-related features, and Predicate–Constituent features) by
applying different learning algorithms and tagging strategies
[30], [33]–[37]. As a representative, [30] made an extensive
study on the feature-based SRL using a support vector machine
(SVM) classifier [38]. For the interested, please refer to [28,
Table 1] for a summary of the standard linguistic features em-
ployed by most SRL systems. Although feature-based methods
represent the state-of-the-art for SRL, they cannot model
syntactic structured information effectively. For example, the
widely used Parse Tree Path feature in feature-based methods
is so sensitive to small changes in syntactic parse trees that a
pair of predicate-argument structures will have two different
Parse Tree Path features even if they differ only by one node,
resulting in poor model generalization problems [22].

B. Kernel-Based Methods for SRL

As an alternative to feature-based methods, kernel methods
[38] have the potential to better model structured objects due
to its ability to directly measure the similarity between two
structured objects without explicitly enumerating their sub-
structures. In literature, many kernels have been proposed in the
machine learning community and applied in NLP. In particular,
[39] proposed the well-known convolution kernels for a discrete
structure. Motivated by this work, more and more kernels are
proposed and explored in NLP [11], [15], [40], [41], such as the
convolution Tree Kernel [15], the String Subsequence Kernel
(SSK) [40], the Syllables-based String Kernel [42], and the
Graph Kernel (HDAG Kernel) [43].

Of special interest here, [22] extracted the Predicate Argu-
ment Feature (PAF) portion from a parse tree, which includes
salient substructures of the predicate–argument structure, and
computed the similarity between two PAFs using the convolu-
tion tree kernel. Under the same framework, [23] further sepa-

rated the PAF into a Path portion and a Constituent Structure
portion and combined the two convolution tree kernels over
these two separated portions into a single composite kernel.
[23] showed that such method significantly increased the per-
formance on the CoNLL-2005 SRL data.

One major problem with the convolution tree kernel is that
it only performs hard matching without considering linguistic
knowledge. Therefore, it fails to handle similar phrase struc-
tures and quasi-synonymic grammar tags. In order to overcome
these shortcomings, this paper proposes a grammar-driven con-
volution tree kernel to better explore grammatical substructures
by considering those nonidentical substructures but with similar
syntactic properties.

IV. GRAMMAR-DRIVEN CONVOLUTION TREE KERNEL

In this section, we first briefly review the kernel trick and the
standard convolution tree kernel and then define our grammar-
driven convolution tree kernel.

A. Kernel Trick

For a linear classification algorithm, it is usually to learn a
hyper plane to separate two class objects.

is a flat feature vector representation of a classifying object
in an -dimensional space over the real numbers, i.e., .

and are parameters learned from training data.
The object is mapped to via a feature function ,

being the set of the objects. The kernel trick allows us to
rewrite the hyper plane as

where is the label of training object , which is equal to 1
for positive examples and 1 for negative examples, ,
and the product is the kernel (simi-
larity) function associated with the mapping . Note that we do
not need to apply the mapping explicitly, the can be
used directly. This allows us, under Mercer’s conditions [44],
to define abstract kernel (similarity) functions which generate
implicit feature spaces.

B. Convolution Tree Kernel

Convolution (parse) tree kernel [15] counts the number of
common subtrees as the syntactic similarity between two parse
trees, where a parse tree is implicitly represented by a vector
of integer counts of each subtree type (regardless of its ances-
tors)

subtree subtree

where subtree is the occurrence number of the th sub-
tree type subtree in . Fig. 2 illustrates a parse tree “NP
some/DT red/JJ cars/NNS” with all of its 11 subtrees covered
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Fig. 2. Syntactic parse tree and all of its 11 subtrees covered by the convolution tree kernel.

by convolution tree kernel. Since the number of different sub-
trees increases exponentially with the parse tree size, it is com-
putationally infeasible to use the feature vector directly.
To solve this computational issue, [15] proposed the following
parse tree kernel to calculate the dot product between the above
high dimensional vectors implicitly:

subtree subtree

where and are the sets of nodes in trees and , respec-
tively, and is a function whose value is 1 iff there is
a subtree rooted at node and zero otherwise, and
is the number of the common subtrees rooted at and , i.e.,

Furthermore, can be computed in polynomial time
by applying following recursive rules.

R-1: if the productions (CFG rules) at and are dif-
ferent, then .
R-2: else if both and are preterminals (POS tags),

.
R-3: else

where is the number of children of , is the
th child of node . Please note that a decay factor

is introduced to make the kernel value less variable
with respect to the subtree sizes. This corresponds to a modified

kernel subtree subtree 3,
where is the number of rules in the th subtree. In addition,
rule R-3 holds because given two nodes with the same children,
one can construct common subtrees using these children and
common subtrees of further offspring in a recursive way. The
time complexity for computing this kernel is .4

C. Grammar-Driven Approximate Substructure Matching

The standard convolution tree kernel requires exact matching
between two contiguous phrase structures. It means that only
identical phrase structures are matchable. This constraint may
be too strict. For example, “NP DT JJ NN” (NP a red car)
and “NP DT NN” (NP a car) in two parse trees contribute
nothing to the standard conventional tree kernel although they
share much similar syntactic structure property and thus should
play the same semantic role for a given predicate. Therefore, we
propose a grammar-driven approximate matching mechanism to
capture the similarity between such kinds of structures for SRL
by constructing a reduced rule set with optional nodes, e.g., [JJ]
in “NP DT [JJ] NP” and [ADVP] in “VP VB [ADVP]
PP.” For convenience, we call “NP DT JJ NP” the original
rule and “NP DT [JJ] NP” the reduced rule. Here, we define
two grammar-driven criteria to determine reduced rules.

1) The reduced rules must be grammatical. This means that
a reduced rule should be valid, i.e., occurring in the orig-
inal rule set, which are collected from training data. For ex-
ample, “NP DT [JJ] NP” is acceptable since “NP DT
NP” also occurs in the original rule set, while “VP [VB
ADVP] PP” is invalid since “VP PP” does not occur in
the original rule set.

2) A reduced rule must keep the head child of its corre-
sponding original rule and has at least two children. This
is to ensure that the reduced rules retain much of the

3Due to the exponential nature of the original kernel (when � = 1), larger
matchable subtrees will have much more influence, then by analogy with a
Gaussian kernel we say that the original kernel is very peaked [15]. If we use the
kernel to construct a model which is a linear combination of trees, as one would
with an SVM or the perceptron, the output will be dominated by the most similar
tree, and so the model will behave like a nearest neighbor rule [15]. Experiments
in [15], [22], [41] empirically verify this point. To overcome this problem, the
decay factor � is introduced to downweight the contribution of subtrees expo-
nentially with their sizes. For details, please refer to [15, p. 4].

4[45] proposed a suffix-tree-based algorithm that can compute a tree kernel
in linear complexity. Unfortunately, their algorithm is not applicable to the tree
kernel (as discussed in this paper) since their algorithm requires all the leaf nodes
in a subtree to be terminal nodes (i.e., lexical word in a parse tree) while the leaf
nodes in our subtrees can be nonterminals (e.g., phrase tags NP and VP, and
POS tags NN and NNS).
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semantics of the corresponding original rules and to avoid
over-generation of reduced rules.

In this paper, the original rule set is extracted from a training
corpus. By defining a small set of optional nodes for each type
of left-hand phrases manually, we can automatically build a set
of reduced rules from the original rule set (Later in Section V,
we will discuss this issue in more details). For two rules A and
B with the same left-hand phrase label to be matched, A should
be equal to B after zero or more deletions of optional nodes. Ob-
viously, the head child of A must be aligned to the head child of
B. Given the reduced rule set, we can formulate the approximate
substructure matching mechanism as follows:

(1)

where
• is a production rule, representing a subtree of depth one,5

and likewise for .
• is the th variation of the subtree by removing zero

ore more optional nodes, and likewise for . The training
algorithm of a kernel method converges only when using a
proper kernel. To make sure that the new kernel is a proper
kernel, all the possible variations of the original subtrees
should be considered.

• is a binary function that is 1 iff the two subtrees are
identical and zero otherwise.

• is a weight to penalize the removal
of optional nodes, while and denote the numbers of
removed optional nodes in subtrees and , respec-
tively.

returns the similarity between two subtrees and
by summing up the similarities between their possible varia-

tions. Please note that all the possible variations are taken into
account in (1) in order to guarantee that the new kernel is a
proper one. Under the approximate matching mechanism, two
subtrees are matchable with proper weighting if they are iden-
tical after removing zero or more optional nodes. In this way,
“NP a red car” and “NP a car” is matchable with a
penalty in our new kernel. This means that one such co-oc-
currence of the two structures contributes to our proposed
kernel while it contributes nothing to the standard one. There-
fore, with the approximate substructure matching mechanism,
our method would be able to explore more linguistically appro-
priate substructures than the standard one.

D. Grammar-Driven Approximate Node Matching

The convolution tree kernel only considers exact matching
between two (terminal/nonterminal) nodes. However, some
similar POSs or phrase tags may represent similar roles, such
as NN (dog), NNS (dogs), and NP (the dog). In order to capture
this phenomenon, we allow approximate matching between
node features for better coverage by introducing some equiva-
lent node feature sets:

• JJ, JJR, JJS;
• VB, VBD, VBG, VBN, VBP, VBZ;

5Equation (1) is defined over subtrees of depth one. Multilayer subtree ap-
proximate matching can be achieved recursively. We will discuss it later in Sec-
tion IV-E

• NN, NNS, NNP, NNPS, NX.6

where node features in the same line are treated as analogous
and can match each other. Similar to the approximate substruc-
ture matching mechanism, we introduce a new parameter
( to weight approximate node matching. We call
it node feature mutation7 and the approximate node matching
mechanism can be formulated as

(2)

where is a node feature, is the th mutation of , and is
zero iff and are identical and 1 otherwise, and likewise for

and . is a function that is 1 iff the two features are
identical and zero otherwise. Equation (2) sums over all combi-
nations of feature mutations as the node feature similarity. Same
as (1), all the possibilities are taken into account in (2) to guar-
antee that the new kernel is a proper kernel.

E. Grammar-Driven Convolution Tree Kernel

Both the approximate substructure and node matching mech-
anisms are grammar-driven, i.e., they retain most of the un-
derlying linguistic constraints and keep the semantic meanings
of the original rules. Given these two approximate matching
mechanisms, we can define our grammar-driven convolution
tree kernel step by step. First, we can represent a parse tree
using a feature vector implicitly

subtree subtree

where subtree is the occurrence number of the th sub-
tree type subtree in . Please note that, unlike the standard
convolution tree kernel, we relax the condition for the occur-
rence of a subtree by allowing both original and reduced rules
(via the approximate substructure matching), and node feature
mutations (via the approximate node matching). In other words,
the criteria by which a subtree is said to occur are modified. For
example, one occurrence of the subtree “NP DT JJ NP” con-
tributes 1 and to its counterparts “NP DT JJ NP,” and “NP

DT NP,” respectively, in the new kernel, while it only con-
tributes 1 to “NP DT JJ NP” in the standard one.

Then, we can define the grammar-driven kernel between two
parse trees

subtree subtree

(3)

6In Penn TreeBank II, the phrase tag NX standards for a kind of noun phrase
(NP) that is used to mark the head of certain complex NPs.

7In this paper, nonterminals are manually grouped according to their syntactic
similarity and a mutation of a nonterminal in a group is used to refer to another
nonterminal in the group.
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where and are the sets of nodes in trees and , re-
spectively. Given and are the total numbers of removed op-
tional nodes and mutated node features at node , respectively,

is iff there is a subtree rooted at node
and zero otherwise. Moreover, counts the weighted
number of common subtrees rooted at and , i.e.,

(4)

Obviously, can be further computed using fol-
lowing recursive rules.

R-A: if and are pre-terminals, then

(5)

where and are features of nodes and , respec-
tively, is defined in (2) and, similar to the stan-
dard convolution tree kernel, the decay factor

is introduced to make the kernel less variable to the sub-
tree size.
R-B: else if both and are the same nonterminals,
then generate all variations of subtrees of depth two rooted
at and (denoted by and , respectively) by
removing different optional nodes

(6)

where
• and denote the th and th variations of subtrees

and , respectively;
• is a function that is 1 iff the two subtrees are

identical and zero otherwise;
• and stand for the number of removed optional

nodes in subtrees and , respectively;
• returns the number of children of in its th

subtree variation ;
• is the th child of node in its th variation

subtree , and likewise for ;
• similar to R-A, is also included here to

make the kernel less variable to the subtree size.
R-C: else

R-A accounts for the approximate node matching while R-B
accounts for the approximate substructure matching. In R-B, (6)
is able to carry out multilayer subtree approximate matching by
its recursive nature, while (1) is only effective for two-layer sub-
trees. Moreover, we reformulate (4) into (5) and (6) for efficient
computation. Since (4) is a dot product, we can easily prove that
our kernel defined in (3) is a valid kernel using the proof as given
in [39].

It is interesting to observe the difference in the substruc-
tures covered by the standard convolution tree kernel and the
grammar-driven convolution tree kernel. Fig. 3 shows that the
grammar-driven kernel can capture additional 17 grammatical
substructures with proper weighting.

F. Efficient Computation of the Grammar-Driven Convolution
Tree Kernel

One major problem with the grammar-driven convolution tree
kernel is its computational complexity, which is exponential in
nature due to the approximate substructure and node matching
mechanisms. In particular, computing (6) requires exponential
time if computed by brute force since all variations of the cur-
rent subtree have to be explicitly generated by removing one
or more optional nodes although the number of reduced rules
is bounded by the number of rules in the original Treebank.
Here, we present an efficient dynamic programming (DP) al-
gorithm to compute the grammar-driven kernel in polynomial
time. Similar to the partial tree (PT) kernel [16], we recast (6)
as finding common subtrees with possible optional nodes be-
tween two parse trees and rewrite it as

(7)

where
• and are the child node sequences of and ;
• evaluates the number of common subtrees with

exactly children (at least including all nonoptional nodes)
rooted at and ;

• and is the number of
non-optional nodes;

• and returns the number of
children;

• the decay factor is introduced to make
the kernel less variable to the subtree size, similar to the
standard convolution tree kernel.

Now the problem becomes how to calculate ef-
ficiently. In this paper, we propose a dynamic programming al-
gorithm similar to the one used in the PT kernel. Let us first
look at the DP algorithm in the PT kernel. Given two child node
sequences and ( and are their last chil-
dren, respectively), the DP algorithm in the PT kernel evaluates

recursively as follows:8

(8)

with the following two stopping criteria

node sequence pair and

if (9)

any node sequence pair and (10)

where is a binary function that is 1 iff two nodes are
matchable and zero otherwise. Obviously, (8) is a typical DP
algorithm and (9) and (10) are two stopping criteria of the DP
algorithm. Moreover, (8) shows the following.

8Thanks to A. Moschitti for giving us his source code of the PT kernel. Based
on the source code, we reformulated the PT kernel as (8)–(10) instead of his
original complicated equations. In addition, for clarity, we did not consider pe-
nalizing the length of the child sequence. Moreover, we find a typo in their orig-
inal formula: the last plus sign “+” in the (5) in his paper [16] should be a
subtraction sign “�”.
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Fig. 3. Syntactic parse tree and all of its 28 substructures covered by the grammar-driven convolution tree kernel (compared with the standard convolution tree
kernel).

• If the last two children nodes and are matchable, then
we can 1) use to further count the number of
common subtrees rooted at the matchable node pair and 2)
use to evaluate the number of common sub-
trees with exactly children between and .

• Besides, is called twice over the two shorter node
sequence pairs with nodes and removed, respectively.
Since will be called twice in and

in the next recursive call, we subtract one in
(8) to avoid the duplicate calculation. Indeed, this kind of
double-counting problem appears frequently in NLP, and
is sometime known as “spurious ambiguity” [46].

• The time complexity of computing is
since for any node pair and , is called

only once.
Compared with the PT kernel, the grammar-driven tree kernel

has two special characteristics.
C1: the grammar-driven kernel only skips optional nodes
while the PT kernel has no restriction on node skipping.
C2: the grammar-driven kernel penalizes removed optional
nodes only (including both interior and exterior skipped
nodes) while the PT kernel weights the length of subse-
quences (all interior skipped nodes are counted in, but ex-
terior nodes are ignored).

By taking these two factors into consideration, can
be computed in the grammar-driven kernel as follows:

with the following two stopping criteria:

node sequence pair and

if

any node sequence pair and

where is a binary function, which is 0 if nonoptional
nodes are found in the node sequence and 1 otherwise (for
C1); is the weight to reflect skipped optional nodes, and the
power of is the number of skipped optional nodes (for C2).
Compared with the PT kernel, the grammar-driven kernel intro-
duces the function and the penalty . This is to ensure
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Fig. 4. Comparison of the convolution tree kernel and the grammar-driven kernel.

that the grammar-driven kernel only skips optional nodes and
penalizes those subtrees with skipped optional nodes.

It is clear that we can compute in .
This means that the computational complexity of the grammar-
driven convolution tree kernel is in the worst
case, where is the maximum branching factor
of the two trees. Note that the average in natural language
parse trees is normally very small and the overall complexity
can be reduced by avoiding the computation of node pairs with
unmatchable labels (refer to R-C in Section IV-E).

G. Comparison With Previous Work

To provide better understanding of our grammar-driven
kernel, this section compares it in detail with related tree
kernels one by one, such as the convolution tree kernel [15],
the PT kernel [16], the labeled order tree kernel [17], [18],
the LTAG-based tree kernel [21], the path-sensitive parse tree
kernel [11], the path-sensitive dependency tree kernel [14], and
the shortest path kernel over dependency trees [19], [20].

The conventional convolution tree kernel [15] is a special case
of our grammar-driven kernel. From the kernel function view-
point, our kernel considers not only exact matching but also
approximate matching. From feature exploration viewpoint, al-
though they explore the same substructures (defined recursively
by the phrase parse rules), their substructure values are different
since our kernel captures similar substructures in a more lin-
guistically appropriate way. Fig. 4 compares the standard kernel
and the grammar-driven kernel on two similar trees. It shows
that the standard kernel is only able to derive two common sub-
trees, while the grammar-driven kernel can obtain additional
nine common substructures.

Compared with the PT kernel [16] which allows par-
tial matching between subtrees, both the standard and

grammar-driven tree kernels generate much fewer substruc-
tures. Fig. 5 compares the PT kernel with the standard convolu-
tion tree kernel. In some sense, the grammar-driven tree kernel
is a special case of the PT kernel. The main difference is that
the PT kernel is not grammar-driven, and hence allowing many
nonlinguistically motivated substructures to be matched. This
may compromise the performance in SRL [16] since some of
the generated nongrammatical substructures may be noisy due
to the lack of linguistic interpretations and constraints. Another
difference is that the PT kernel does not allow approximate
node matching. As a result, our kernel exploits linguistic
knowledge than the PT kernel.

The labeled order tree kernel [17], [18] generalizes the convo-
lution kernel over labeled order trees. It is much more adaptable
than the PT kernel and can explore much larger substructures
than the PT kernel through exploiting label mutations and elastic
structure matching. However, the same as the PT kernel, the la-
beled order tree kernel is not grammar-driven. Thus, it may face
the same issues (over-generation of nongrammatical substruc-
tures) as the PT kernel when used in NLP applications.

The LTAG-based tree kernel [21] was proposed to utilize
LTAG-based features in parse tree reranking. The major char-
acteristic with this kernel is that it needs to obtain a LTAG
derivation tree for each parse tree before kernel calculation. In
comparison, our kernel considers optional nodes using a set of
empirical CFG rules.

Both the path-sensitive parse tree [11] and dependency tree
[14] kernels match nodes from roots to leaf nodes recursively
layer by layer in a top-down manner with the former working on
parse trees and the latter on dependency trees. We note that these
two kernels impose a strong constraint on kernel computation:
matchable nodes should have an identical path of ascending
nodes from the roots to the current nodes. For the shortest path
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Fig. 5. Syntactic parse tree and all of its substructures covered by the PT kernel (compared with the standard convolution tree kernel).

tree kernel [19], [20] over dependency trees, it simply counts the
number of common word classes at each position in the shortest
paths between two constituents in dependency trees. This kernel
is similar to the widely used path feature in SRL without con-
taining any structured information. Compared with the above
three kernels, the convolution tree kernel is more flexible and
robust. Evaluation on the ACE corpus [47] of the relation extrac-
tion task [41] shows that the convolution tree kernel significantly
outperforms the above three kernels. In particular, regarding the
node similarity calculation, the path-sensitive dependency tree
kernel defined a similarity function, returning the number of fea-
ture values in common between the two node feature vectors
as the node similarity. Compared with our approximate node
matching mechanism, their similarity function does not consider
feature mutation and lack the approximate matching function-
ality. Furthermore, we distinguish the original feature from its
mutation (refer to and at (2) in this paper), and introduce
a small weight to penalize the approximate matching when
involving feature mutation. Of course, we can introduce the ap-
proximate node matching mechanism into the node similarity
function of the path-sensitive dependency tree kernel by mod-
ifying their node feature compatibility function. However, the
problem is that, without feature mutation, we cannot guarantee
the modified node similarity function is still a proper kernel due
to its failure to include all possible variations of the original fea-
ture.

V. EXPERIMENTS

In this section, we have systematically evaluated the
grammar-driven convolution tree kernel on semantic role la-
beling.

A. Experimental Setting

We mainly use the CoNLL-2005 data on the SRL shared task
[6] for our evaluation, which consists of the Wall Street Journal
part of the Penn TreeBank [29], with annotated predicate-argu-
ment structures from the PropBank I corpus [4]. In total, there
are 35 roles including seven Core (A0–A5, AA), 14 Adjunct
(AM-), and 14 Reference (R-) arguments. As defined by the
shared task, we use sections 02–21 for training, section 24 for
development and section 23 for testing, respectively. Table I
gives the statistics of the three data sets. For SRL, each sentence
is preprocessed in pipeline, including POS tagging [48], named
entity recognition [49] and syntactic parsing [50], [51]. Note
that the predicates are already annotated in the corpus. There-
fore, for fair comparison, we suppose that those predicates have
been recognized perfectly in our experiments.

Furthermore, we use constituents as the labeling units to
form the labeled arguments. Due to the errors from automatic
syntactic parsing, it is impossible for all arguments to find
their matching constituents in parse trees. Statistics on the
CoNLL-2005 training data shows that 10.08% of arguments
have no matching constituents using the Charniak parser [50],
and the number increases to 11.89% using the Collins parser
[51]. Therefore, we only adopt the Charniak parser in prepro-
cessing. In order to speed up the learning process, we use a
four-stage approach.

Stg 1: A pruning stage [33] is applied to filter out the con-
stituents that are clearly not semantic arguments to the
predicate.
Stg 2: The candidates derived from Stg 1 are identified as
either arguments or nonarguments using a binary classifier.
Stg 3: Identified arguments from Stg 2 are classified into
one of the semantic roles using a multicategory classifier.
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Fig. 6. Comparison of the PT kernel and the standard convolution tree kernel.

TABLE I
STATISTICS OF THE CONLL-2005 SRL DATA

Stg 4: A rule-based postprocessing stage [52] is used to
handle unmatched arguments with constituents, such as
AM-MOD and AM-NEG. In addition, for embedded argu-
ments or arguments with the same labels, we only maintain
the one with maximum probability or score.

Besides, the following are more details on experimental set-
tings:

1) Evaluation Method: Accuracy is used to evaluate the per-
formance of semantic role classification (Stg 3), while the
whole SRL system is evaluated using precision, recall, and

of the predicted arguments. Here, srl-eval.pl,9 the offi-
cial evaluation program of the CoNLL-2005 SRL shared
task, is adopted to evaluate the system performance.

2) Classifier: SVM [38] is selected as our classifier for Stgs
2 and 3. Since SVM is a binary classifier, we adopt the
one versus others strategy to handle the multiclassification
problem in Stg 3 and select the label with the largest margin
as the final output. This also allows us to design a parallel
training process which trains different binary classifiers at
the same time. Finally, the Tree Kernel in the SVM-Light
Tool (SVM-Light-TK) [16], [53] is modified to become a
grammar-driven one.

3) Kernel Setup: For comparison, we also develop a state-of-
the-art feature-based method, which uses the same Con-
stituent, Predicate, and Predicate–Constituent related fea-
tures as in [30], as the baseline feature-based method. In
addition, the best-reported tree kernel

,10 proposed by [23] in SRL, is
adopted as our baseline kernel. For convenience, we call
the original one in [23] a nongrammar-driven hybrid con-
volution tree kernel and the enhanced one which uses our
grammar-driven tree kernel to compute and a
grammar-driven hybrid tree kernel .

9http://www.lsi.upc.edu/~srlconll/srl-eval.pl.
10K andK are two standard convolution tree kernels to describe predi-

cate-argument path substructures and argument syntactic substructures, respec-
tively. For details, please refer to [23].

For approximate structure matching, we extract about 4700
production rules with at least five occurrences, including the
most frequent phrases, such as NP, VP, and ADJP form the en-
tire CoNLL 2005 training data. Finally, we get 1404 rules with
optional nodes by introducing three sets of optional nodes:

• NP: JJ, ADJP, ADVP, CC;
• VP: ADVP;
• ADJP: ADVP, CC, RB.
For approximate node matching, we define three equivalent

node feature sets as follows:
• JJ, JJR, JJS;
• RB, RBR, RBS;
• NN, NNS, NNP, NNPS, NAC, NX.
Here, we ignore the verb-related equivalent node feature set

“VB, VBD, VBG, VBN, VBP, VBZ” since voice information is
very indicative in distinguishing A0 (Agent, operator) and A1
(Thing operated).

B. Experimental Results

To verify the effectiveness of the proposed grammar-driven
kernel from different viewpoints, we report two kinds of experi-
mental results on different experimental settings. In the first ex-
periment, we use the gold parse trees extracted from the Penn
TreeBank corpus and assume that the semantic role identifica-
tion (Stg 2) has been done correctly. In this way, we can focus
solely on the semantic role classification task (Stg 3). In the
second experiment, we use the Charniak parser to automatically
parse the entire CoNLL-2005 data and evaluate our kernel in the
actual four-stage SRL system. The other reason to do so is that,
although there are much research on SRL reported in the liter-
ature, they are evaluated using different experimental settings.
In this way, we can compare our method with previous research
in a more comprehensive way (please refer to Tables II–IV for
details).

In order to speed up parameter tuning for the two experi-
ments, only four WSJ sections (Sections 02–05) are used in
training when fine-tuning the parameters. Of course, all the fol-
lowing performances are reported on the test data using the en-
tire training data.

Experimental Results Using Gold Parse Trees on the Entire
Data With Perfect Argument Identification: For comparison, we
set the tree kernel decay factor [22], the SVM regular-
ization parameter [41], and the hybrid kernel param-
eter [23]. In addition, the two penalty factors (for
approximate structure matching) and (for approximate node
matching) are fine-tuned to 0.6 and 0.3, respectively.
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TABLE II
PERFORMANCE COMPARISON ON SEMANTIC ROLE

CLASSIFICATION OF THE CONLL 2005 DATA

TABLE III
PERFORMANCE COMPARISON WITH PREVIOUS WORK ON SEMANTIC

ROLE CLASSIFICATION OF THE PROPBANK I CORPUS

TABLE IV
PERFORMANCE COMPARISON ON SEMANTIC ROLE LABELING

OF THE CONLL 2005 DATA USING SINGLE PARSE TREE

Table II compares the performance of different methods on
the test data. It shows that the following.

1) The grammar-driven hybrid convolution tree kernel sig-
nificantly outperforms ( test with ) the non-
grammar one with an absolute improvement of 2.75% (87.
96%–85.21%). This suggests that additional linguistically
motivated substructures are very useful for semantic role
classification and that the grammar-driven kernel is much

more effective in capturing such useful substructures due
to the consideration of linguistic knowledge in the kernel
design.

2) Both the grammar-driven approximate node and substruc-
ture matching mechanisms are very useful for semantic
role classification, with the performance improvements of
1.06% (86.27%–85.21%) and 1.91% (87.12%–85.21%),
respectively. Moreover, it is interesting to find that their
contributions are additive.

3) Our grammar-driven kernel with the approximate sub-
structure and node matching mechanisms achieves only
0.55% (88.51%–87.96%) and 1.96% (89.92%–87.96%)
worse than the state-of-the-art feature-based linear kernel
and the feature-based polynomial kernel, respectively. In
the literature, kernel methods perform much worse than
feature-based methods in SRL [16], [22], [23]. This is
the first research in kernel methods that achieves compa-
rable performance with the state-of-the-art feature-based
methods in SRL. While feature-based methods have
been explored extensively and found difficult to further
improve the performance, kernel methods have the po-
tential for better performance. Our research justifies this
potential and steps a big stride along the right direction
since our composite kernel achieves significant ( test
with ) performance improvement over the pre-
vious best-reported both feature-based and kernel-based
methods as discussed in the next paragraph.

4) The bigram combination of flat features by polynomial
kernel is very useful, resulting in 1.41% (89.
92%–88.51%) accuracy improvement.

In order to make proper use of syntactic structure information
and diverse flat features, we also present a composite kernel to
combine the grammar-driven hybrid tree kernel and the state-of-
the-art feature-based polynomial kernel (with degree )

where is fine-tuned to 0.3. Table II shows that the composite
kernel achieves 91.02% in accuracy, which is significantly better
( test with ) than the polynomial kernel ( ,
Accuracy ) and the grammar-driven hybrid convolu-
tion tree kernel ( , Accuracy ). This suggests
that these two kinds of kernels are quite complementary. This
is not surprising since tree kernel methods focus on capturing
syntactic structured information while feature-based methods
cover different knowledge sources, such as Voice, Sub-Catego-
rization, which are hard to be covered by the tree kernel.

For more comparison, evaluation is also done on the Prop-
Bank I corpus (LDC2004T14), with the training, development
and test data following the conventional split of Sections
02–21, 00 and 23. Table III compares our method with pre-
viously best reported methods.11 It shows that our method
significantly ( test with ) outperforms the previous
best reported method with an accuracy improvement of 0.97%
(91.97%–91.0%). This further verifies the effectiveness of the
grammar-driven kernel method for semantic role classification.

11Since the two datasets are very similar (please refer to Section II), we simply
use the same parameter settings on the dataset of the PropBank I corpus.
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Finally, it shows that both the approximate matching mecha-
nisms improve the performance but not significantly ( test
with ). This may be due to that the rich flat features
used in the feature-based polynomial kernel compromise the
contributions of the two approximate matching mechanisms.

Experimental Results With Automatic Parse Trees on the
Entire Data With Imperfect Argument Identification: In order to
examine the influence of the grammar-driven convolution tree
kernel on a complete SRL system, we implement a four-stage
SRL system, which adopts a state-of-the-art feature-based
SVM classifier to identify semantic arguments (Stg 2) and our
grammar-driven tree kernel to label the semantic roles (Stg 3).
In particular, and are fine-tuned to 0.8 and 0.2, respec-
tively, with other parameters remaining the same as previous
experiments.

Table IV compares different methods working on a single
parse tree. As the baseline system, [55] ranks the fifth among
all the participating systems on the CoNLL 2005 SRL shared
task and the best when using only one parse tree returned by the
Charniak parser. It shows the following.

1) The feature-based polynomial kernel outperforms
AdaBoost applied in [55].

2) The composite kernel in [23], which combines a non-
grammar-driven hybrid convolution tree kernel and the
feature-based polynomial kernel, outperforms the poly-
nomial kernel and significantly ( test with )
outperforms the best-reported system on the CoNLL 2005
SRL shard task when using only one parse tree.

3) Among all the methods, our composite kernel, which com-
bines a grammar-driven hybrid convolution tree kernel and
the feature-based polynomial kernel, achieves the best per-
formance. It significantly ( test with ) out-
performs [23]’s composite kernel by 0.72% (78.13%–77.
41%) in and significantly ( test with ) out-
performs the best reported system (based on one parse tree)
on the CoNLL 2005 SRL shard task by 1.67% (78.13%–76.
46%) in . This further verifies the effectiveness of the
grammar-driven convolution tree kernel for SRL.

4) The relaxation on the number of child nodes to at least one
node in defining reduced rules leads to 0.35% (78.13%–77.
78%) performance drop. This empirically verifies our as-
sumption that the two-node constraint enables the reduced
rules to well retain the semantics of the corresponding orig-
inal rules. Statistics on the CONLL-2005 training set show
that 73.59% rules have three to six children nodes while
there are 18.59% rules have exact two children node and
only 4.6% rules have exact one child node. This indicates
that relaxation to at least one node may introduce two much
flexibility to the approximate substructure matching mech-
anism and thus harm the performance.

5) Both the approximate matching mechanisms improve the
performance (77.69% and 77.51% versus 77.41%), but not
significantly ( test with ). This may be due to
that the rich flat features used in the feature-based polyno-
mial kernel compromise the contributions of the two ap-
proximate matching mechanisms.

Figs. 7 and 8 exemplify the advantage of the grammar-driven
convolution tree kernel over the nongrammar-driven one for

Fig. 7. SRL result using the grammar-driven hybrid convolution tree kernel.

Fig. 8. SRL result using the nongrammar-driven hybrid convolution tree
kernel.

SRL. The grammar-driven kernel can label argument A1 cor-
rectly while the nongrammar-driven cannot. This is mainly due
to the following.

1) The production “NP DT ADJP JJR NN” has much lower
frequency (only five times) in the training data. This makes
the nongrammar-driven one fail.

2) The original production “NP DT ADJP JJR NN” bears
much similarity with its frequently occurring counterpart
“NP DT JJ NN” (more than 28 000 times) due to both
the approximate substructure and node matching mecha-
nisms (with the mutation of JJ to JJR and the inclusion
of ADJP as an optional node to the reduced rule “NP
DT [ADJP] JJR NN”). This makes the grammar-driven one
work.

Finally, Table V compares the computational burden of the
two composite kernels in training (CPU 2.66G 8 and Mem
8G). It shows that:

1) The grammar-driven convolution tree kernel only in-
creases slightly the computational burden, although the
grammar-driven kernel has the computational complexity
of in its worse case. This verifies the
efficiency of our dynamic programming algorithm.

2) It is very time-consuming to train an SVM classifier in a
large dataset.
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TABLE V
COMPARISON OF COMPUTATIONAL BURDEN IN TRAINING

VI. CONCLUSION AND FUTURE WORK

Kernel methods have been widely studied in speech and
language processing, and have the potential to systematically
explore structured information for many NLP applications.
In this paper, we propose a novel grammar-driven convolu-
tion tree kernel to explore more linguistic knowledge in the
kernel design for SRL. The experimental results verify the
effectiveness of the grammar-driven tree kernel in capturing
grammatical substructures over the standard convolution tree
kernel by allowing grammar-driven approximate matching of
substructures and nodes.

Although tree kernels have achieved promising results in
many NLP applications, they always lack linguistic consid-
eration when generating the substructures. To the best of our
knowledge, this is the first attempt to integrate linguistic knowl-
edge in the tree kernel design, and our research brings a big
step toward this direction.

A more broad motivation of this paper is that a measure of
syntax-tree similarity should be informed by linguistics. We re-
port our preliminary study on computing the linguistics-moti-
vated syntax-tree similarity using tree kernel methods. In de-
signing the grammar-driven convolution tree kernel, there are
still many degrees of freedom worth exploring in the future.

• Different penalties according to what node is being deleted,
and in what context. In this paper, a small penalty is uni-
formly applied to all removed optional nodes, and an infi-
nite penalty is applied to all removed nonoptional nodes. In
the PT kernel [54], there is no penalty for “exterior” dele-
tions while the dependency tree kernel [14] got the best
results when assigning infinite penalty to “interior” dele-
tions. Therefore, in the future we will explore a more flex-
ible penalizing mechanism by varying the deletion penalty
according to what node is removed and in what context.

• Ability to align unequal terminals or nonterminals. In
this paper, only preterminal and one nonterminal (NX)
are considered in evaluating approximate node alignment
matching mechanism. However, the mechanism also
applies to other nonterminals and terminals (e.g., using
WordNet-based similarity). We will continue to explore it
in the future work.

• Allowing deletion of Chomsky-adjuncts, e.g., by flattening
the tree.

• Other possible heuristics for determining which nonter-
minal nodes are obligatory to match. Currently, we only
force all head nodes to match each other.

Another interesting research topic for future work is to inte-
grate linguistic knowledge with tree kernels for effective feature
selection in tree kernel-based NLP applications [56]. In partic-
ular, a linguistics and statistics-based theory is expected to be
worked out, suggesting the effectiveness of different substruc-
tures and if they should be generated by the tree kernels. This
will lead to better use of syntactic parse tree information in-
stead of enumerating the substructures in an exhaustive way.
In addition, the proposed kernel is worth further verifying in
other NLP applications, such as relation extraction or parsing.
We would also like to study whether the approximate matching
mechanisms are applicable to other kinds of structured data,
such as, protein structures in bioinformatics. Following this line,
we would also like to investigate the way to generalize our pro-
posed method for more structured data, with only minimal spe-
cialization for NLP applications.
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