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Abstract
Standard incremental parsing algorithm employs a
single scoring function and beam-search to find the
best parse tree from an exponentially large search
space. Inspired by recently proposed HC-search
framework, we decompose the incremental pars-
ing algorithm into two steps: first searching a set
of high-quality outputs with beam-search, and sec-
ond selecting the best output with a ranking model.
We learn our incremental parsing model with a re-
laxed learning objective. We incorporate arbitrary
features in our ranking model and learn the model
from fine grain ranking examples. Experimental
results on standard English and Chinese datasets
show our method significantly outperforms a strong
baseline.

1 Introduction
Transition-based dependency parsing models the derivation
of a parse tree (as illustrated in Figure 1) as a sequence of
parsing actions [Nivre, 2008]. Finding the correct tree is
transformed into a search-based structured prediction prob-
lem [Collins, 2002; Daumé et al., 2009] of finding the optimal
action sequence from an exponentially large search space.
The search problem is treated as a left-to-right incremental
process, namely, the incremental parsing [Collins and Roark,
2004] and inexact search algorithms like greedy search and
beam-search are adopted. Compared with greedy search,
beam-search reduces search errors and achieves better per-
formance, especially when guided by a discriminative model
learned with structured perceptron algorithm.

The most basic approach to learn such model is via imi-
tation of one oracle action sequence and making corrective
updates to enforce the model to score the oracle sequence
high. Although empirically performs well, such learning ap-
proach faces several problems. One of the problems can be
resulted from the intrinsic spurious ambiguity in the transi-
tion system [Goldberg and Nivre, 2012], which is, one gold
tree can be derived by multiple action sequences. Such am-
biguity can confuse the imitation learning process and lead
the model to improperly score the “non-oracle but correct”
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Figure 1: An example dependency parse tree.

action sequence. Another problem is that for each state in the
search process, only a partial tree is constructed, while for the
final states, information of the tree can be fully recovered. In-
cremental parsing treats these two different states in the same
way and doesn’t efficiently use the full tree information, com-
paring to the global parsing methods like dual-decomposition
[Martins et al., 2010] and sampling [Zhang et al., 2014].

Inspired by the recent proposed HC-search [Doppa et al.,
2014a], especially its similarity to the incremental parsing in
term of loss decomposition, we propose a new method which
decomposes the incremental parsing into two steps: H-step
and C-step. In the H-step, we perform beam-search to un-
cover high-quality candidate outputs. In the C-step, we apply
a ranking model to select the best loss output. By such de-
composition, we are allowed to adopt a relaxed learning ob-
jective to learn the incremental parsing model in the H-step
and it mitigates improperly scoring problems. We treat search
and ranking differently by incorporating global features in the
C-step and gain improvement by learning the model with fine
grain ranking examples. Contributions of this work fall into
the following parts:

• We follow the loss decomposition in the HC-search
framework and decompose the incremental parsing into
two steps: H-step for uncovering high-quality candidate
outputs and C-step for selecting the best output.

• We study the problem of adopting a relaxed learning ob-
jective to learn the H-step model and it achieves both
stage-wise and overall better performance.

• We also study different ranking examples generation ap-
proaches when learning the C-step model and find it nec-
essary to learn from fine grain ranking examples.

• We conduct our experiments on standard datasets and
the results show our method outperforms a strong base-
line by an error reduction of 3.63% on English and
5.21% on Chinese. Further improvements are achieved
when combining two steps together.



Algorithm 1: Beam-search for one step, i.e. BESTk.
Input: x = the input, Bj = list of states in previous step, ~w =

the weight, s = the scoring function.
1 B ← ∅
2 for each state c ∈ Bj do
3 for each transition action t ∈ T do
4 c′ ← t(c), c′.score← c.score+ s(x, c′, ~w)
5 B ← B ∪ c′

6 sort B according to the score of each state.
7 return TOP-K(B), k-highest scoring states in B.

Algorithm 2: Learning algorithm for standard incremen-
tal parsing.

Input: D = the training instances, R = the max iteration.
Output: ~w, The weight for incremental parsing model.

1 ~w0 ← ~0, t← 0 . t, the timestamp
2 for r ← 1..R do
3 for each training instance (x, y∗) ∈ D do
4 C0..m ← ORACLEFINDING(y∗)
5 B0 ← {c0}
6 for j ← 1..m do
7 Bj ← BESTk(x,Bj−1, ~wt)
8 if cj /∈ Bj then
9 C′0..j ← argmaxc′∈Bj s(x,C0..c′ , ~wt)

10 ~wt+1 ←UPDATE(C0..j , C
′
0..j , ~wt)

11 break

12 if cm 6= argmaxc′∈Bms(x,C0..c′ , ~wt) then
13 C′0..m ← argmaxc′∈Bms(x,C0..c′ , ~wt)

14 ~wt+1 ←UPDATE(C0..m, C
′
0..m, ~wt)

15 t← t+ 1

16 return ~w, which is average of ~w0, .., ~wt

We release our code at https://github.com/
ExpResults/hc-incremental-parsing.

2 Transition-based Incremental Parsing
We follow Nivre [2008] and define the transition-based pars-
ing algorithm as a transition system S = (C, T, I, Ct), where
C is a set of states, T is a set of transition actions, I is the
initial states and Ct is a set of terminal states. Given a sen-
tence x, parsing is performed by starting from an initial state
c0 ∈ I , and repeatedly applying transition action t ∈ T to
the current state c ∈ C until a terminal state cm ∈ Ct is
reached. The action sequence C0..m = (c0, c1, .., cm) is a se-
quence of states resulted by actions, where c0 ∈ I , cm ∈ Ct,
and ti(ci) = ci+1 given ti is the ith step transition action. In
this paper, we use the arc-standard algorithm [Nivre, 2008]
as our transition system, which has three transition actions:
LEFT-ARC (LA), RIGHT-ARC (RA) and SHIFT (SH). 1

The beam-search algorithm is used to derive the best parse
tree ŷ, which searches for the highest scoring action sequence
step by step. At each step, the beam-search algorithm keeps
a list (i.e. beam) of high-quality states with the guidance

1refer to Nivre [2008] for details about the arc-standard system.
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Figure 2: The two types of errors in learning the incremental
parsing model. The solid line represents the oracle sequence
falls out of beam at the 3rd step. The dashed line represents
the oracle sequence stays in beam at the final step but is not
the highest scoring one.

of a scoring function and applies transition actions only to
the states in beam to result in states for next step, as out-
lined in Algorithm 1. For a state c, standard incremental
parsing parameterizes the scoring function as s(x, c, ~w) =
~wΦ(x, c), where ~w is the parameters and Φ(x, c) extracts fea-
tures from the state. For an action sequenceC0..m, such score
is
∑
c∈C0..m

s(x, c, ~w).
The learning and decoding for the incremental parsing are

closely related, which decodes the training instance and make
corrective updates when search error is made in order to score
the gold tree (derived by an oracle action sequence) high-
est. More specifically, during learning, the algorithm iter-
ates through all the training instances. On each instance
(x, y∗), the algorithm first generates an oracle action se-
quence C0..m from y∗ (the ORACLEFINDING function), then
performs beam-search on x to find the highest scoring action
sequence C ′0..m. If search error is made, which means C ′0..m
is not identical to C0..m, the algorithm makes perceptron up-
dates (the UPDATE function) to enforce s(x, c, ~w) to give a
higher score to C0..m (positive sample) than C ′0..m (negative
sample).

To guarantee the correctness of perceptron updates under
approximate beam-search decoding, search errors can be cat-
egorized into two types: 1) s(x, c, ~w) fails to uncover gold
tree before search finishes, in which the gold state cj ∈ C0..m

falls out of the beam Bj at jth step; 2) s(x, c, ~w) fails to score
gold tree highest, in which the gold state cm stays in the fi-
nal step beam Bm but is not the highest-scored state [Collins
and Roark, 2004; Huang et al., 2012]. Figure 2 illustrates
these two types of errors. When the first type of error occurs,
the beam-search stops and the algorithm updates the parame-
ters with partial sequence pair (C0..j , C

′
0..j). For the second

type of error, the algorithm updates with full sequence pair
(C0..m, C

′
0..m). The learning algorithm is shown in Algo-

rithm 2. Line 8-11 illustrates the condition for the first type
of error, and line 12-14 is for the second type of error.

3 HC-search for Incremental Parsing
3.1 HC-search
By reviewing the learning algorithm for standard incremen-
tal parsing, we can see that the single scoring function serves
two roles: 1) guiding the search process towards the gold tree
by minimizing the first type of error and 2) scoring the gold
tree as the highest one by minimizing the second type of er-
ror. For standard incremental parsing, these two roles are al-
most consistent with each other because scoring the oracle ac-
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Figure 3: Example of the learning algorithm for standard in-
cremental parsing being inconsistent in minimizing the two
types of errors and improperly punishing the “non-oracle but
correct” action sequence. The parse tree in Figure 1 can be
derived by 1) the oracle sequence (SH, SH, SH, RA, SH, SH,
LA, RA, LA) in solid line and 2) the “non-oracle but correct”
sequence (SH, SH, LA, SH, RA, SH, SH, LA, RA) in dashed
line. In this case, the second type of error occurs and the
learning algorithm updates parameters with 2) as a negative
sample which increases the first type of error.

tion sequence highest indicates minimizing both the first and
the second type of errors. However, improper punishment
on “non-oracle but correct” sequence can be resulted some-
times because spurious ambiguity makes minimizing these
two types of errors inconsistent. Figure 3 illustrates this.

Doppa et al. [2014a] studied structured prediction via out-
put space search and proposed the HC-search framework to
solve the deficiency of a single scoring function in guiding
search and simultaneously ranking generated outputs. In-
stead of learning a single scoring function, HC-search de-
composes the problem into three steps. Step 1 searches for
an initial structured output from the input over the primary
space [Doppa et al., 2014b]; Step 2 explores a set of alterna-
tive outputs rooted at the initial output, which is a search pro-
cess guided by the heuristic functionH over the output space,
named as the H-step; Step 3 scores each output with a cost
function C and selects the highest scoring one as final output,
named as the C-step. To learnH and C, they decomposed the
output space search error EHC into two parts: 1) Generation
error εH due to H not generating high-quality outputs and
2) Selection error εC|H due to C not selecting the best loss
output. Given an instance (x, y∗), this error is described as

EHC = L(x, y∗H, y
∗)︸ ︷︷ ︸

εH

+L(x, ŷ, y∗)− L(x, y∗H, y
∗)︸ ︷︷ ︸

εC|H

, (1)

where y∗H is the best loss output of those H-step returns.
Based on this decomposition, Doppa et al. [2014a] proposed
a stage-wised learning method by first trainingH to minimize
εH, then training C to minimize εC|H conditioned on εH.

Our method is inspired by the HC-search framework. We
find the similarity between standard incremental parsing and
HC-search in term of loss decomposition. Following the
HC-search, we decompose the errors in standard incremen-
tal parsing into 1) Generation error for not generating the
gold tree before search finishes, which consists with the first
type of error and 2) Selection error for not selecting the best
loss tree from the trees in final step beam, which consists with
the second type of error. Different from theHC-search which
performs heuristic search over the output space, we generate
our candidate outputs by beam-search, which is guided by a
heuristic functionH and searches over the primary space (i.e.
the space defined by the transition system). More specifically,

Algorithm 3: Heuristic function learning algorithm.
Input: D = the training instances, R = the max iteration.
Output: ~w, The weight for the heuristic function.

1 ~w0 ← ~0, t← 0
2 for r ← 1..R do
3 for each training instance (x, y∗) ∈ D do
4 C0,m ← ORACLEFINDING(y∗)
5 B0 ← {c0}
6 for j ← 1..m do
7 Bj ← BESTk(x,Bj−1, ~wt)
8 if cj /∈ Bj then
9 c′j ← SELECTNEGATIVESAMPLE(Bj)

10 ~wt+1 ←UPDATE(C0..j , C
′
0..j , ~wt)

11 break

12 t← t+ 1

13 return ~w, which is average of ~w0, .., ~wt

outputs derived by the sequences in final step beam are col-
lected as the candidate outputs for the C-step. In the C-step, a
cost function C is adopted to select the best loss one as the fi-
nal output. To learn ourH and C functions, we follow Doppa
et al. [2014a] and minimize εH and εH|C in a stage-wised
manner.

3.2 Learning Heuristic Function
We parameterize our heuristic function in the same
way with standard incremental parsing as H(x, y) =∑
c∈C0..m

~wΦ(x, c) where y is derived byC0..m, andH(x, y)
can be trained similarly by imitating the oracle sequence.
However, different from the standard incremental parsing,
minimizing the learning objective in our H-step means guid-
ing the search towards the final step and uncovering the gold
tree by scoring the oracle sequence higher than the sequences
not in beam, but not necessarily scoring it highest. This dif-
ference indicates that the second type of error for learning
standard incremental parsing model doesn’t violate our H-
step learning objective because the gold tree is uncovered in
this condition. To learn a better heuristic function, we modify
the learning algorithm by omitting the second type of error
and only performing corrective updates on the first one. Al-
gorithm 3 outlines this learning algorithm, in which updates
on the second type of error (line 12-14 in Algorithm 2) are
omitted. By learning the heuristic function in such way, some
improper updates like the case in Figure 3 can be voided.

In the learning algorithm for standard incremental parsing,
making corrective updates with the “highest scoring incor-
rect” sequence as a negative sample C ′0..m will learn a model
that gives the oracle sequenceC0..m the highest score. While,
without the necessity of scoring C0..m highest in ourH-step,
we are allowed to select any sequence in beam as a negative
sample, because updates with any of these sequences C ′0..m
as a negative sample will enforce the model to score C0..m

higher than C ′0..m and uncover the gold tree derived by C0..m

in the outputs. In Algorithm 3, we generalize the negative
sample selection into a SELECTNEGATIVESAMPLE function
(line 9). In this paper, we investigate two different strategies
for selecting negative sample, which are 1) BEST by select-



ing the highest scoring sequence in beam and 2) WORST by
selecting the lowest scoring sequence. Both these two strate-
gies satisfy our learning objective, but lead to different mod-
els. Intuitively, the WORST strategy is more conservative than
the BEST because it only encourages the model to score the
oracle sequence higher than all the sequences not in beam.

3.3 Learning Cost Function
Given a set ofH-step outputs YH(x), we want our cost func-
tion correctly rank the “best loss” output in the C-step. We
formulate the learning problem for the cost function as a rank-
ing problem. More specifically, we want the “better loss”
outputs to rank better than the “worse loss” ones, which is a
bipartite ranking problem [Agarwal and Roth, 2005]. In gen-
eral, our learning algorithm for the cost function firstly gen-
erates a collection of bipartite ranking examples, then learns
parameters from these examples.

A widely used approach [Huang, 2008; Doppa et al.,
2014a] for generating the ranking examples is by collecting
the “best loss” outputs from YH(x) as Ybest and generating
the examples as (y+, y−) ∈ Ybest×YH(x)\Ybest. Owing to
that it categorizes the outputs into the “best loss” and “non-
best loss” groups and only cares for the ranks between these
two groups with omitting the ranks among the “non-best loss”
outputs, we name it as COARSE approach.

To make use of ranks among the “non-best loss” outputs
and refine the COARSE approach, we categorize the outputs
into m groups (YH,1, ..,YH,m) by their losses to the gold
tree. Outputs in the same group share the same loss and
higher ranked group has better loss than the lower ranked.
Thus, YH,1 is equivalent to Ybest in the COARSE approach.
For the jthe group YH,j , we collect all its lower ranked
outputs ∪mk=j+1YH,k and generate the ranking examples as
(y+, y−) ∈ YH,j × ∪mk=j+1YH,k. By generating examples
with FINE grain approach, we allow our model to capture the
sophisticated relation between outputs of different qualities.

In this paper, we parameterize our cost function as
C(x, y) = ~wΦ(x, y), where Φ(x, y) extracts features from
an output tree y at arbitrary order. For a pair-wised ranking
example (y+, y−), we learn the parameters ~w by constrain-
ing C to score y+ higher than y−, i.e. C(x, y+) > C(x, y−).
Further, we require that C(x, y+) is greater than C(x, y−) by
a margin ∆(y+, y−) = L(x, y−, y∗)− L(x, y+, y∗). By im-
posing the margin, we enforce our cost function to score the
tree far from “best loss” tree even smaller.

Learning from every pair of ranking examples between
“better loss” group Y+ and “worse loss” group Y− can re-
sult in an over-constrained problem. In this case, we relax
the constraint by enforcing C(x, y) to give the lowest-scored
output in Y+ a higher score than the highest-scored output in
Y−. Putting them together, we formulate our constraint as

C(x, y+)− C(x, y−) ≥ ∆(y+, y−),

where y+ = argminy∈Y+C(x, y)

y− = argmaxy∈Y−C(x, y)

We outline our learning method for the cost function in
Algorithm 4. Line 1-5 shows the ranking example genera-
tion approach. The categorizing part of COARSE and FINE

Algorithm 4: Cost function learning algorithm.
Input: D = the training instances, R = the max iteration.
Output: ~w, The weight for the cost function.

1 G ← ∅ . G, a set of ranking group pairs
2 for each training instance (x, y∗,YH(x)) ∈ D do
3 YH,1, ..,YH,m ← RANK(x, y∗,YH(x))
4 for j ← 1..m− 1 do
5 G ← G ∪ (x, y∗,YH,j ,∪m

k=j+1YH,k)

6 ~w0 ← ~0, t← 0
7 for r ← 1..R do
8 for each ranking group pair (x, y∗,Y+

H,Y
−
H) ∈ G do

9 y+ ← argmin
y∈Y+

H
~wtΦ(x, y)

10 y− ← argmax
y∈Y−H

~wtΦ(x, y)

11 ∇f ← ~wtΦ(x, y+)− ~wtΦ(x, y−)

12 ∆← L(x(i), y−, y∗)− L(x(i), y+, y∗)
13 if ∆ 6= 0 and∇f < ∆ then
14 ~wt+1 ← UPDATEPA(∇f,∆, ~wt)

15 t← t+ 1

16 return ~w, which is average of ~w0, .., ~wt

approaches is generalized into a RANK function. Line 6-
15 shows the model learning procedure. We use the on-
line passive-aggressive algorithm [Crammer et al., 2006] to
learn the parameters ~w. For each pair of bipartite ranking
groups, lowest-scored “better loss” output y+ and highest-
scored “worst loss” output y− are picked out (line 9, 10). If
C(x, y) fails to score y+ higher than the y− by ∆(y+, y−),
passive-aggressive updates are performed (line 14).

Cross Validation
We need to note that mis-matched output distribution between
training and testing will be resulted if we generate the ranking
examples for learning the cost function on the data we train
our heuristic function. To mitigate this problem, ranking ex-
amples are generated via cross validation.

4 Experiment
4.1 Settings
We conduct our experiments on the Penn WSJ Treebank
(PTB) for English and Chinese Treebank 5 (CTB5) for Chi-
nese. Data are split into training, development and test set
in the same way with the previous study [Zhang and Nivre,
2011]. Bracket sentences in PTB are converted to depen-
dency formats with Penn2Malt.2 For those in CTB, head-
finding rules from Zhang and Nivre [2011] are used. For the
English data, automatically assigned POS tags are obtained
using 10-fold jackknifing with an accuracy of 97.17, 97.19
and 97.31 on training, development and test set. For the Chi-
nese data, gold segmentation and POS tags are used. Pars-
ing performance is measured by unlabeled attachment score
(UAS) excluding punctuations.3

2http://stp.lingfil.uu.se/˜nivre/research/
Penn2Malt.html

3Following Chen and Manning [2014], a token is a punctuation
if its gold POS tag is {“ ” : , .} for English and PU for Chinese.



Parser PTB CTB5
Dev Test SPD Dev Test SPD

BASELINE 92.95 92.48 1x 86.76 86.44 1x
BEST+FINE 93.13 92.76 (+0.28) 1.25x 87.25 87.04 (+0.60) 1.08x
BEST+COARSE 92.94 92.44 (-0.04) 1.30x 86.61 86.51 (+0.07) 1.07x
WORST+FINE 93.12 92.73 (+0.25) 1.33x 87.27 87.15 (+0.71) 1.22x
WORST+COARSE 92.89 92.47 (-0.01) 1.30x 86.95 86.82 (+0.38) 1.20x
BASELINE+FINE 93.06 92.53 (+0.05) 87.07 86.70 (+0.26)

Table 1: Experimental results on PTB and CTB5. The Dev and Test show the results on development and test set respectively.
The SPD shows the relative parsing time compared to the BASELINE. BEST and WORST represents the SELECTNEGA-
TIVESAMPLE strategy in theH-step. COARSE and FINE represents the ranking example generation approach in the C-step.

We set the beam size to 64 for both training and testing in
the H-step, thus, the size of the candidate outputs is 64 for
each instance in the C-step. During training our cost func-
tion with cross validation, we set the number of folds as 20.
Best iterations for learning our heuristic and cost functions
are tuned on the development set. Hamming distance is used
as loss function L throughout this paper.

In the H-step, we adopt the feature templates used in
Zhang and Nivre [2011] to capture information on each
search state. Zhang et al. [2014] proposed rich global fea-
tures for their sampling-based parser and we adopt their fea-
ture templates in the C-step. Details for the feature templates
can be referred in the supplemental materials.

4.2 Baseline
Our BASELINE parser is a standard incremental parser with
the same feature templates and beam size to our H-step. On
the PTB and CTB5 test set, our BASELINE parser achieves
UAS scores of 92.48 and 86.44 respectively. Since the PTB
score is higher than its transition-based counterparts in Table
4, we can confirm our BASELINE parser as a strong one.

4.3 Results
Table 1 shows our results. We report the performances of
our parsers combining of different negative sample selec-
tion strategies in learning the heuristic function and different
ranking example generation approaches in learning the cost
function. Our best-setting parsers outperform the BASELINE
by 0.28 on PTB and 0.71 on CTB5 test data and the error
reductions are 3.63% and 5.21% respectively. Significance
test shows the improvements are statistically significant with
p < 0.01.

A natural question raises that “Can we achieve similar im-
provement by adding an additional ranking step (i.e. the C-
step) over our BASELINE?” We replace the heuristic function
in the BEST+FINE parser with our BASELINE and perform
the same ranking process on the BASELINE outputs. We show
the result in the last block of Table 1. From this result, im-
provements over the BASELINE are observed, but they are of
a smaller margin than the best-setting parsers.

4.4 Loss Decomposition Analysis
We analyze the decomposed loss (the Generation loss εH and
the Selection loss εC|H) on the development set to investi-
gate the reason for improvements. Given a set of H-step
outputs YH(x), according to Equation 1, εH is resulted by

Parser PTB CTB5
εH εC|H EHC εH εC|H EHC

BEST+FINE 3.69 3.90 6.87 8.77 5.72 12.75
BEST+COARSE 4.14 7.06 6.93 13.39
WORST+FINE 3.05 4.62 6.88 7.75 7.33 12.73
WORST+COARSE 5.09 7.11 7.58 13.05
BASELINE+FINE 3.70 4.10 6.94 8.81 6.27 12.93

Table 2: Error decomposition of the heuristic and cost func-
tions in different parsers on the development set.

the heuristic function losing gold tree and is measured by
L(x, y∗H, y

∗), which is the number of errors between the best
loss output y∗H in YH(x) and the gold tree y∗. εC|H is re-
sulted by the cost function not selecting the best loss output
and is measured by the average number of errors between
the final output ŷ and the best loss outputs Ybest, which is∑
y∈Ybest

L(x, ŷ, y) / ||Ybest||.
Table 2 shows the loss decomposition analysis results. For

theH-step, the parsers with relaxed learning objective (BEST,
WORST) generally achieve smaller εH than the BASELINE.
And the parsers with conservative SELECTNEGATIVESAM-
PLE strategy (i.e. the WORST) achieve consistently smaller
loss than those with aggressive strategy (i.e. the BEST). This
table shows the relaxed learning objective is more helpful for
uncovering high-quality outputs in the H-step. We attribute
the smaller loss to the fact that the relaxed learning objective
mitigates improper updates resulted from search ambiguities.
Our observation of the conservative strategy achieving better
εH also confirms that. For the C-step, the parsers with FINE
grain approach consistently achieve better εC|H than those
with COARSE approach. This shows the necessity to learn
from fine grain ranking examples.

In Table 2, we can see that a smaller εH always couples
with a larger εC|H. It’s difficult to confirm which step con-
tributes more to the final performance because our C-step
error is effected by the H-step outputs. But by comparing
the BEST+FINE, WORST+FINE with BASELINE+FINE, the
parsers trained with relaxed learning objective achieve better
overall performance, which indicates the importance to learn
the model according to the loss decomposition rather than
minimizing εC|H on both steps like the BASELINE+FINE.

4.5 MixingH and C functions
Following many approaches that mix scores from two stages
[Hayashi et al., 2013; Le and Zuidema, 2014], we define our
mixture parser as a combination of ourH and C functions with



Parser non-mixture mixture
BASELINE 92.48
BASELINE+FINE 92.53 92.94
BEST+FINE 92.76 93.02
WORST+FINE 92.73 93.05

Table 3: Comparison of the non-mixture and mixture parsers
on the PTB test data.

Parser UAS
Transition-based
Chen and Manning [2014] 92.00
Huang and Sagae [2010] 92.10
Our BASELINE 92.48
Dual-Decomposition
Martins et al. [2011] 93.07
Mixture-model
Le and Zuidema [2014] 93.12
Hayashi et al. [2013] 93.12
Our Mixture WORST+FINE 93.05

Table 4: Comparison with the state-of-the-art parsers on the
PTB test data.

a linear interpolation, i.e. ŷ = argmaxy∈YH(x)αH′(x, y) +

(1−α)C′(x, y), whereH′(x, y) and C′(x, y) are the rescaled
scores and α ∈ [0, 1] is a hyper parameter tuned on the de-
velopment set. 4 We compare our mixture and non-mixture
parsers in Table 3. Our mixture parsers outperforms the non-
mixture counterparts by 0.26 and 0.32 on BEST+FINE and
WORST+FINE. The gains in UAS score suggest that our
method can be further improved by considering the quality of
heuristic search in the final decision. Also, our BEST+FINE
and WORST+FINE mixture parsers perform better than the
BASELINE+FINE mixture parser, which further shows the ef-
fectiveness of the relaxed learning objective in theH-step and
the necessity to learn the model based on the decomposed
loss.

Finally, we compare our best-setting parser with the
state-of-the-art parsers in Table 4. Our mixture parser
gets superior accuracy than the transition-based parsers and
achieves comparable performance with the state-of-the-art
dual-decomposition and mixture-model parsers.

4.6 Parsing Speed
One advantage of incremental parsing lies on the property
that parsing is bounded to linear time. Outputting k-best can-
didates can be done without increasing the time-complexity
compared to the exact search algorithm based on dynamic
programming [McDonald and Pereira, 2006]. In our ap-
proach, only an additional ranking model is imposed to score
and select the best loss output from a fix-sized set of out-
puts, thus, it maintains the linear complexity. Empirically, we
show the relative time consumption of ourHC-search parsers
compared with the BASELINE in Table 1. This comparison

4In this paper, we rescale the H(x, y) and C(x, y) over YH(x)

as F ′(x, y) =
F(x,y)−miny′ F(x,y′)

maxy′ F(x,y′)−miny′ (x,y
′) . α is 0.395 for BASE-

LINE+FINE, 0.210 for BEST+FINE and 0.225 for WORST+FINE in
our experiments.

shows that our parsers can perform accurate parsing without
sacrificing the speed.

5 Related Work
Previous studies on standard incremental parsing mainly fo-
cus on proposing new transition systems, speeding up de-
coding and incorporating global features [Huang and Sagae,
2010; Zhang and Nivre, 2011; Bohnet and Nivre, 2012]. In
this paper, we study the model learning in stage-wised man-
ner based on loss decomposition.

Two-stage parsing methods are widely adopted. One genre
of such work is performing reranking on a k-best list [Collins
and Duffy, 2002; Charniak and Johnson, 2005; Huang, 2008;
Le and Zuidema, 2014]. Another genre is doing a second-
time decoding with the first stage output as features [Hayashi
et al., 2013]. Our method can be viewed as a reranking-
styled method. However we analyzed the theoretical intu-
ition for our two-stage method and learn our model following
loss decomposition, which shows superior to the model with-
out following such decomposition. What’s more, we learn the
ranking model from fine grain ranking examples which is less
studied in previous works.

Zhang et al. [2014] proposed a sampling-based inference
method for dependency parsing, which can be considered as
an instance of the output space search. Our work resembles
theirs by incorporating global features in the C-step, but dif-
fers in both decoding and model learning.

In this paper, we base our method on the framework of
HC-search [Doppa et al., 2014a], but we employ a different
H-step. In their work, heuristic search is performed on the
output space while ours is performed on the primary space
(i.e. the space defined by the transition system). We show
that primary space search can also be effective for generating
high-quality outputs.

6 Conclusion
In this paper, we proposed a new approach for incremental
parsing based on the loss decomposition ofHC-search frame-
work. In the H-step, we uncover high-quality candidate out-
puts with beam-search. In the C-step, we select the best loss
output with a ranking model. We learn theH-step model with
a relaxed objective and the C-step model from fine grain rank-
ing examples. Experimental results show our parser outper-
forms a strong baseline. Further improvements are achieved
when combining two steps together.

Acknowledgments
This work was supported by the National Key Basic Re-
search Program of China via grant 2014CB340503 and the
National Natural Science Foundation of China (NSFC) via
grant 61133012 and 61370164.

References
[Agarwal and Roth, 2005] Shivani Agarwal and Dan Roth.

Learnability of bipartite ranking functions. In Peter Auer
and Ron Meir, editors, Learning Theory, volume 3559 of



Lecture Notes in Computer Science, pages 16–31. Springer
Berlin Heidelberg, 2005.

[Bohnet and Nivre, 2012] Bernd Bohnet and Joakim Nivre.
A transition-based system for joint part-of-speech tag-
ging and labeled non-projective dependency parsing. In
EMNLP-2012, pages 1455–1465, Jeju Island, Korea, July
2012. ACL.

[Charniak and Johnson, 2005] Eugene Charniak and Mark
Johnson. Coarse-to-fine n-best parsing and maxent dis-
criminative reranking. In ACL-2005, pages 173–180, Ann
Arbor, Michigan, June 2005. ACL.

[Chen and Manning, 2014] Danqi Chen and Christopher
Manning. A fast and accurate dependency parser using
neural networks. In EMNLP-2014, pages 740–750, Doha,
Qatar, October 2014. ACL.

[Collins and Duffy, 2002] Michael Collins and Nigel Duffy.
Convolution kernels for natural language. In T.G. Diet-
terich, S. Becker, and Z. Ghahramani, editors, NIPS, pages
625–632. MIT Press, 2002.

[Collins and Roark, 2004] Michael Collins and Brian Roark.
Incremental parsing with the perceptron algorithm. In
ACL-2004, pages 111–118, Barcelona, Spain, July 2004.

[Collins, 2002] Michael Collins. Discriminative training
methods for hidden markov models: Theory and experi-
ments with perceptron algorithms. In EMNLP-2002, pages
1–8. ACL, July 2002.

[Crammer et al., 2006] Koby Crammer, Ofer Dekel, Joseph
Keshet, Shai Shalev-Shwartz, and Yoram Singer. On-
line passive-aggressive algorithms. J. Mach. Learn. Res.,
7:551–585, December 2006.

[Daumé et al., 2009] Hal Daumé, Iii, John Langford, and
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