
25

Learning to Recommend Related Entities With Serendipity

for Web Search Users

JIZHOU HUANG, Harbin Institute of Technology & Baidu Inc.

SHIQIANG DING and HAIFENG WANG, Baidu Inc.

TING LIU, Harbin Institute of Technology

Entity recommendation, providing entity suggestions to assist users in discovering interesting information,

has become an indispensable feature of today’s Web search engine. However, the majority of existing en-

tity recommendation methods are not designed to boost the performance in terms of serendipity, which also

plays an important role in the appreciation of users for a recommendation system. To keep users engaged, it

is important to take into account serendipity when building an entity recommendation system. In this arti-

cle, we propose a learning to recommend framework that consists of two components: related entity finding

and candidate entity ranking. To boost serendipity performance, three different sets of features that correlate

with the three aspects of serendipity are employed in the proposed framework. Extensive experiments are

conducted on large-scale, real-world datasets collected from a widely used commercial Web search engine.

The experiments show that our method significantly outperforms several strong baseline methods. An anal-

ysis on the impact of features reveals that the set of interestingness features is the most powerful feature

set, and the set of unexpectedness features can significantly contribute to recommendation effectiveness. In

addition, online controlled experiments conducted on a commercial Web search engine demonstrate that our

method can significantly improve user engagement against multiple baseline methods. This further confirms

the effectiveness of the proposed framework.

CCS Concepts: • Information systems → Web search engines; Recommender systems;

Additional Key Words and Phrases: Serendipity, serendipitous recommendations, serendipitous entities,

recommender system, entity recommendation, Web search

ACM Reference format:

Jizhou Huang, Shiqiang Ding, Haifeng Wang, and Ting Liu. 2018. Learning to Recommend Related Entities

With Serendipity for Web Search Users. ACM Trans. Asian Low-Resour. Lang. Inf. Process. 17, 3, Article 25

(April 2018), 22 pages.

https://doi.org/10.1145/3185663

1 INTRODUCTION

Entity recommendation, providing entity suggestions to assist users in discovering interesting
information, has become an indispensable feature of today’s Web search engine. Over the past

This research was supported by the National Basic Research Program of China (973 program no. 2014CB340505).

Authors’ addresses: J. Huang, S. Ding, and H. Wang, Baidu Techn Park Bldg No.1, No.10 Xibeiwang East Road, Haid-

ian District, 100193 Beijing, China; emails: {huangjizhou01, dingshiqiang01, wanghaifeng}@baidu.com; T. Liu, Research

Center for Social Computing and Information Retrieval, Harbin Institute of Technology, 150001 Harbin, China; email:

tliu@ir.hit.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2018 ACM 2375-4699/2018/04-ART25 $15.00

https://doi.org/10.1145/3185663

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 17, No. 3, Article 25. Publication date: April 2018.

https://doi.org/10.1145/3185663
mailto:permissions@acm.org
https://doi.org/10.1145/3185663

25:2 J. Huang et al.

Fig. 1. Example of Baidu’s search results page for the query “Obama.” The entity recommendations are
presented in the group “People also search for” on the right panel.

few years, major commercial Web search engines have enriched and improved user experience of
information retrieval by presenting entity suggestions related to a query besides the regular search
results. Figure 1 shows an example of the Baidu1 Web search engine’s search results page for the
query “Obama.”2 On the right panel, a ranked list of celebrities related to “Obama” is presented
in the group “People also search for,” providing users a quick access to entities closely attached to
their interests and enhance their information discovery experiences.
Serendipity plays an important role in the appreciation of users for a recommendation system

and has shown to be a possible way to alleviate the problem of overspecialization [34]. Specifically,
overspecialization is the problem that recommendation systems have no inherent method for
finding something unexpected [34]. Therefore, recommendation systems generally suffer from
the problem of overspecialization [26, 35]. To alleviate this problem, several approaches have
been proposed in previous studies, such as adding some randomness [36], filtering out items
that are too similar [41], or introducing serendipity into a recommendation system [1, 3, 7, 19,
26, 42]. Among these efforts, introducing serendipity has been shown to help users discover
some surprisingly unexpected items and has been demonstrated to enhance users’ information
discovery experiences [1, 7, 26, 37, 42].

Although there is some previous work on building entity recommendation systems (e.g., [2, 4,
5, 13, 40]), they are not designed to boost the performance in terms of serendipity, which also
plays an important role in the appreciation of users, as it might assist users in making surprisingly
interesting discoveries. To keep users engaged, it is important to take into account serendipity
when building an entity recommendation system. To the best of our knowledge, little research has
been published on recommending related entities with serendipity to users.
In this article, we study the problem of recommending entities with serendipity related to both

a given query and a user. We propose a learning to recommend framework that consists of two
components: related entity finding and candidate entity ranking. More specifically, given an entity
query3 eq that a useru is searching for, we first extract a set of candidate entitiesR (eq) related to eq
and then learn a scoring function to rank the entities in R (eq) according to how well they engage
the interest ofu. We define the concept of serendipity in the context of entity recommendation. To

1https://www.baidu.com/.
2We translate the example from Chinese to English for the sake of understanding.
3Unless otherwise stated, we assume in this article that the query is an entity query hereafter.

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 17, No. 3, Article 25. Publication date: April 2018.

https://www.baidu.com/

Learning to Recommend Related Entities With Serendipity for Web Search Users 25:3

boost serendipity performance, three different sets of features that correlate with the three aspects
of serendipity are employed in the proposed framework. Extensive experiments are conducted on
large-scale, real-world datasets collected from a widely used commercial Web search engine. The
experiments show that our method significantly outperforms several strong baseline methods. An
analysis on the impact of features reveals that the set of interestingness features is the most pow-
erful feature set, and the set of unexpectedness features can significantly contribute to recommen-
dation effectiveness. In addition, online controlled experiments conducted on a commercial Web
search engine demonstrate that our method can significantly improve user engagement against
multiple baseline methods. This further confirms the effectiveness of the proposed framework.
The remainder of this article is organized as follows. The problem statement of this study is

introduced in Section 2. Section 3 presents the proposed framework. Experimental setup and result
analysis are reported in Section 4 and 5. Important related work is reviewed in Section 6. We
conclude the article in Section 7.

2 PROBLEM STATEMENT

Before providing a detailed description of the proposed learning to recommend framework in
Section 3, we first present the definition of serendipity in the context of entity recommendation.
Then we formally define our task.

2.1 Definition of Serendipity

The definition of serendipity has not yet been standardized; various definitions are proposed
for serendipity by researchers in the recommendation system domain (e.g., [1, 7, 19, 23, 26,
42]). However, three important aspects of serendipity are commonly proposed in these studies:
relatedness, unexpectedness, and interestingness. Based on these aspects of serendipity, we define
serendipitous entity in the context of entity recommendation as follows: (1) the entity should
be relevant to the query that a user is searching for (relatedness); (2) the relation between the
entity and the query should not have been otherwise discovered by the user (unexpectedness); and
(3) more importantly, the entity should engage the interest of the user when searching for the
query (interestingness). To be brief, a serendipitous entity is the relevant entity to a query that
could be surprisingly interesting to a user that she might not have otherwise discovered.
To illustrate the idea of serendipity, we consider the following examples of an entity rec-

ommendation system. To explain the difference between recommendation results with varying
degrees of serendipity, we assume that a user u is familiar with the film “Titanic,” her favorite
director is “James Cameron,” and she is searching for the query “Titanic.” First, if the system
simply recommends movies that were directed by “James Cameron,” such as “The Terminator,”
“True Lies,” and “Avatar,” these recommendations will be highly relevant to the query and the
user’s preference but probably not serendipitous due to they might be well known to u. Second,
if the system recommends new movies directed by “James Cameron” that will be released after a
few years, such as “Avatar 2,” “Avatar 3,” and “Avatar 4,” which are planned sequels to the 2009
film “Avatar,” these recommendations will be novel due to the fact that they might be unknown to
u but probably not serendipitous, because they might have been autonomously discovered by u or
they would have been easy to discover. The two preceding cases provide fewer opportunities for
the user to find serendipitous entities. By contrast, if the system recommends movies that were
directed by an unfamiliar director to u or by a new director, such as “The Poseidon Adventure”
(a 1972 disaster film directed by “Ronald Neame”) and “Titanic II” (a 2010 low-budget disaster
film directed by “Shane Van Dyke” and not a sequel to the 1997 film “Titanic” directed by
“James Cameron”), these recommendations are more likely to help the user u find serendipitous
entities, as they uncover some interesting connections with the query and the user’s preference,

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 17, No. 3, Article 25. Publication date: April 2018.

25:4 J. Huang et al.

and they might not have been otherwise discovered by u. From the examples, we can see that
recommendations that are serendipitous are by definition also novel [26], but recommendations
that are novel are probably not serendipitous. To keep users engaged, it is important for the system
to be capable of recommending not only relevant and novel entities but also serendipitous entities.

2.2 Task Formulation

In this section, we formally define the task of recommending entities with serendipity related to
both a given query and a user. Introducing serendipity requires facilitating the recommendation
of serendipitous entities, and it is therefore important to choose an appropriate target to optimize
for the entity recommendation model. In this work, we aim to boost serendipity performance of
the system, and thus we choose features and an optimizing target that correlate with the three
aspects of serendipity. To this end, we employ various features that may imply different degrees
of relatedness, unexpectedness, and interestingness, and we choose the interestingness target
to rank candidate entities. Therefore, the three aspects of serendipity can be combined in one
recommendation model to predict serendipitous entities with respect to a query and a user.
More specifically, given a query eq that a user u is searching for, our task is to extract a set of

candidate entities R (eq) = {e1, e2, . . . , en } related to eq and then learn a scoring function to rank
the entities in R (eq) according to how well they engage the interest of u. At the heart of this task
is the notion of interestingness. Following Gamon et al. [16] and Gao et al. [18], we formally define
the interestingness modeling task as learning the mapping function

f : U ×Q × E → R, (1)

whereU is the set of all users,Q is the set of all queries, E is the set of all entities for all queries in
Q , and R is the results of interestingness scores. The function f (u, eq , ec) is the quantified degree
of interest that a user u ∈ U has in a candidate entity ec ∈ E when searching for a query eq ∈ Q .4

3 LEARNING TO RECOMMEND FRAMEWORK

In this section, we introduce the proposed learning to recommend framework, which consists of
two components: related entity finding and candidate entity ranking. The former is used to extract
a set of candidate entities R (eq) related to a query eq that a useru is searching for, whereas the lat-
ter ranks the entities in R (eq) according to how well they engage the interest of u. The two-phase
framework has been widely used in search applications of the learning to rank (LTR) paradigm
for information retrieval [29], such as query suggestion [32], query rewriting [22], and entity
relationship explaining [24]. This framework enables us to explore ways to optimize the perfor-
mance of candidate finding and gives us flexibility to choose the target to optimize for candidate
ranking. In the following sections, we describe the learning to recommend framework in detail.

3.1 Related Entity Finding

We consider the following three ways to find related entities for a given entity query eq .
First, we use a knowledge graph to extract related entities for eq following Bi et al. [4] and Yu

et al. [40]. A knowledge graph is a centralized repository that contains entities and their relations
with other entities. Most relations in the knowledge graph are common facts, and thus the set
of entities linked with eq in a knowledge graph can be directly extracted as related entities of it,
which is denoted by K (eq). The relatedness score between eq and a candidate entity ec ∈ K (eq)
is estimated as follows:

Pk (ec |eq) =
{
1 if there exists a link between ec and eq in the knowledge graph
0 otherwise.

. (2)

4We set f (u, eq, ec) = 0 for all ec � R (eq), where R (eq) is the set of related entities of eq .

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 17, No. 3, Article 25. Publication date: April 2018.

Learning to Recommend Related Entities With Serendipity for Web Search Users 25:5

Second, since the knowledge graph might be largely incomplete, we supplement related entities
for eq based on search session co-occurrences. Specifically, the top Ns entities co-occurred most
frequently with eq in the same search session are extracted as a set of candidates, which is
denoted by S (eq). The main reason is that some users are engaged in issuing multiple queries
during a search session [39], and this search behavior potentially implies some underlying
relations between entities. Given eq and a candidate entity ec ∈ S (eq), we use pointwise mutual
information to estimate the relatedness score between them:

Ps (ec |eq) =
PMI (ec , eq)∑

e
′
c ∈S (eq)PMI (e

′
c , eq)

, (3)

and PMI (ec , eq) is defined as follows:

PMI (ec , eq) = log
cnt (ec , eq)

cnt (ec) · cnt (eq)
, (4)

where cnt (ec , eq) is the total number of search sessions in which ec and eq co-occur, and cnt (eq)
is the total number of search sessions in which eq occurs.
The search session co-occurrence-based approach can be effective with sufficient data. However,

it can only find related entities for eq that have previously been observed in the search session log
before. Hence, it is unable to estimate the relatedness for newly introduced entities due to the lack
of co-occurrence information for them. To alleviate this problem, we use the method proposed
by Bron et al. [8] to find related entities for eq based on co-occurrences between eq and potential
target entities inWeb documents. First, we collect all entities co-occurredwith eq in a given corpus,
which is denoted by Dr (eq). Then, we rank the entities in Dr (eq) based on the relatedness score
of them. Finally, the top Nd ranked entities in Dr (eq) are extracted as the set of related entities of
eq , which is denoted by D (eq).

Specifically, the relatedness score between eq and a candidate entity ec ∈ Dr (eq) is estimated as
follows. For simplicity, we denote the relatedness score between eq and ec by Pw (ec |eq), and it is
calculated by

P (ec |eq ,T ,R) ≈ P (ec |eq) · P (R |eq , ec) · P (T |ec), (5)

where T is the set of entity types of eq and R is the relation described in the narrative.
P (ec |eq) is the context-independent co-occurrence model and estimated in the same manner using
Equation (3). P (R |eq , ec) is the context-dependent co-occurrence model and is estimated as follows:

P (R |eq , ec) = P (R |θqc) =
∏
t ∈R

P (t |θqc)n (t,R), (6)

where t is the term in R, n(t ,R) is the number of times t occurs in R, and θqc is the co-occurrence
language model that represents the relation between a pair of entities. P (T |ec) is the type filtering
used to filter entities by type and estimated as follows:

P (T |ec) =
{
1 if cat ′(T) ∩ cat (ec) � ∅
0 otherwise,

, (7)

where cat (ec) is a mapping function that maps an entity ec to a set of categories of ec and cat
′(T)

is the set of entity types by performing category expansion on T . For more details, please refer to
Bron et al. [8].
Finally, we merge the entities from the three sources to obtain the set of related entities R (eq)

for eq—that is,

R (eq) = K (eq) ∪ S (eq) ∪ D (eq). (8)

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 17, No. 3, Article 25. Publication date: April 2018.

25:6 J. Huang et al.

3.2 Candidate Entity Ranking

In what follows, we first introduce the strategy to generate training data for learning ranking
models. Then we detail the features and the training process to learn the scoring function.

3.2.1 Generating Training Data. The acquisition of training data in our task is crucial but
challenging especially for a large set of users, queries, and candidate entities. Although using
a manually labeling method is a straightforward way, it is expensive and limited in quantity.
Therefore, the training data are restricted to a small number of labeled instances and would remain
constant if human labels are not consistently and continuously updated, making it difficult to meet
the demand of large-scale, ever-evolving, real-world applications for the Web-scale entity recom-
mendation system. To alleviate this problem, we propose to automatically generate large amounts
of training data for this task by leveraging clickthrough data of a Web search engine. Clickthrough
data are widely used in previous studies of search engines. For example, Gao et al. [17] proposed
learning the translation probability between phrases for improving retrieval effectiveness by using
the clickthrough data. He et al. [22] proposed generating learning targets from the clickthrough
data for the task of query rewriting. Ma et al. [30] proposed learning semantic relations from
clickthrough data for the task of query suggestion. To facilitate the understandability of entity
recommendations in a Web search engine, Huang et al. [25] proposed training machine trans-
lation models for a special application of sentence compression by leveraging the clickthrough
data.
In this article, we use the click behavioral signal of a user to model if a recommended entity

interests the userwhen searching for a query, as click has shown to be a salient observed behavioral
signal of interestingness that has been well accepted in the information retrieval literature [9, 31].
Intuitively, if a user clicks on a recommended entity when searching for a query, it is reasonable
to assume that she is interested in learning more about the clicked entity. Aggregated clicks from
sufficient search logs can therefore serve as a proxy for interestingness. In other words, for a given
query, entities that attract one or more aggregated clicks are more interesting than the ones that
attract no clicks. Gao et al. [18] also made the same assumption and proposed using the click
transitions between two documents as signals to model interestingness and achieved promising
results. Specifically, we use the following strategy to generate learning targets for training ranking
models from the query-entity clickthrough data:

yi jk =

{
1 if click (ui , e jq , e

k
c) > 0

0 otherwise
, (9)

where click (ui , e jq , e
k
c) is the aggregated clicks of a recommended entity ekc for a query e

j
q that a user

ui is searching for and yi jk is a grade label that indicates the interestingness of a triplet 〈ui , e jq , ekc 〉.
In this way, we can generate the pointwise learning targetyi jk for each triplet 〈ui , e jq , ekc 〉. Further-
more, if necessary, the pairwise learning targets can also be easily generated from this data for a
pairwise LTR approach following Dou et al. [12] and Huang et al. [24]—that is, a pairwise training
example is generated if a recommended entity receives more aggregated clicks than the other.

3.2.2 Feature Functions. For each triplet 〈u, eq , ec 〉, three sets of feature functions that corre-
late with the three aspects of serendipity are built: (1) relatedness features that are used to ensure
the relatedness between two entities eq and ec , (2) interestingness features that are used to esti-
mate how well a candidate entity ec could engage the interest of the user u when searching for
the query eq , and (3) unexpectedness features that are used to model how well ec could help a
useru discover some unexpected connections with eq thatu might not have otherwise discovered.

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 17, No. 3, Article 25. Publication date: April 2018.

Learning to Recommend Related Entities With Serendipity for Web Search Users 25:7

Table 1. Features for Entity Ranking

Feature Set # Feature

f 1 Pk (ec |eq), relatedness in a knowledge graph estimated by Equation (2)

Relatedness f 2 Ps (ec |eq), relatedness in search sessions estimated by Equation (3)

features f 3 Pw (ec |eq), relatedness in Web documents estimated by Equation (5)

f 4 simc (eq, ec), content similarity estimated by Equation (10)

f 5 CTR (u, eq, ec), 〈u, eq, ec 〉-specific entity interest calculated by Equation (11)

f 6 CTR (eq, ec), (eq, ec)-specific entity interest calculated by Equation (12)

f 7 CTR (ec), ec -specific entity interest calculated by Equation (13)

Interestingness f 8 CTRt (u, eq, ec), 〈u, eq, ec 〉-specific topic interest calculated by Equation (14)

features f 9 CTRt (eq, ec), (eq, ec)-specific topic interest calculated by Equation (15)

f 10 CTRt (ec), ec -specific topic interest calculated by Equation (16)

f 11 sims (eq, ec), semantic similarity measured by Equation (21)

f 12 Ra (u, eq, ec), 〈u, eq, ec 〉-specific relation awareness estimated by Equation (23)

f 13 dis(ec , E (u, eq)), 〈u, eq, ec 〉-specific dissimilarity estimated by Equation (26)

f 14 disa (ec , E (u, eq)), 〈u, eq, ec 〉-specific average dissimilarity estimated by Equation (27)

Unexpectedness f 15 Ra (eq, ec), (eq, ec)-specific relation awareness estimated by Equation (25)

features f 16 dis(ec , Ew (eq)), (eq, ec)-specific dissimilarity estimated by Equation (29)

f 17 disa (ec , Ew (eq)), (eq, ec)-specific average dissimilarity estimated by Equation (30)

f 18 div(eq), diversity of query eq estimated by Equation (32)

Table 1 summarizes the definitions and descriptions of these features. In the following, we intro-
duce the details of them.

Relatedness Features. Four features are used to measure the relatedness between eq and ec .

Relatedness in a knowledge graph. This feature is computed by Equation (2), which examines
whether there exists a link between eq and ec in a knowledge graph. In our experiments, the links
among two entities were represented as the relations between them. The relations between two
entities were extracted from an in-house knowledge graph that is used by the Baidu Web search
engine, which contains more than 4.9 billion relations between entities.

Relatedness in search sessions. This feature is measured by Equation (3), which indicates the
mutual information between eq and ec in search sessions. In our experiments, search session logs
from a 1-month period of the Baidu Web search engine were used. For confidentiality reasons, we
are not able to provide details about the sessions.

Relatedness in Web documents. This feature is calculated by Equation (5) based on the co-
occurrences between eq and ec in Web documents. Similar to Bron et al. [8], the articles of the
largest Chinese online encyclopedia Baidu Baike5 were used as Web documents to compute the
co-occurrences between two entities. In our experiments, all Baike articles that correspond tomore
than 14 million entities were used.

Content similarity. To further improve the relevance of the candidate entities, we measure the
similarity between two entities by computing the similarity between their corresponding Baike
articles. In our experiments, we used latent Dirichlet allocation (LDA) [6] to model documents.
We trained an LDA model with 1,000 topics on more than 14 million Baike articles. Then we can
obtain a representation for a document d based on topics using the trained LDA model—that is,

5http://baike.baidu.com/.

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 17, No. 3, Article 25. Publication date: April 2018.

http://baike.baidu.com/

25:8 J. Huang et al.

a topic vector vd . Finally, the similarity between two entities eq and ec can be measured as the
cosine similarity between the topic vectors of their corresponding Baike articles deq and dec :

simc (eq , ec) = cos
(
vdeq ,vdec

)
=

(vdeq)
Tvdec

‖vdeq ‖‖vdec ‖
. (10)

Interestingness Features. To model interestingness, the following features are employed.

Entity interest. The features of entity clickthrough rates (CTRs) have shown to be very strong
signals for recommendation [4]. Following Bi et al. [4], we also use the same three CTR features
to model interestingness for a recommended entity ec , which are calculated as follows:

CTR (u, eq , ec) =
click (u, eq , ec) + α

impression(u, eq , ec) + α + β
, (11)

CTR (eq , ec) =
click (eq , ec) + α

impression(eq , ec) + α + β
, (12)

CTR (ec) =
click (ec) + α

impression(ec) + α + β
, (13)

where click (·) is the number of clicks on a recommended entity ec under different conditions
and impression(·) is the number of page impressions in which ec is presented under different
conditions. For example, click (u, eq , ec) indicates the number of clicks on a recommended entity ec
issued by a useru when searching for the query eq . α and β are introduced to estimate a smoothed
CTRwith smaller variance andmore stability for a rare event [38] especially when click (·) is small.
In our experiments, we set α = 0 and β = 100.

Topic interest. Entity interest can be effective for modeling interestingness with sufficient
entity click logs. However, it can only estimate the interestingness scores for clicked entities that
have previously been observed in search logs. Hence, it is unable to estimate the interestingness
scores for unclicked or newly introduced entities due to no clicks being observed for them. To
alleviate this problem, we use the categories of entities to model topic interest. Intuitively, if
a user frequently clicks on a recommended entity ec that is an instance of a category Tc when
searching for a query eq that is an instance of a category Tq , it is reasonable to assume that she
is more likely interested in entities of the category Tc than entities of other categories when
searching for queries of the category Tq . For example, after analyzing the entity click logs, we
found that when a user searched for a film star, she may be more likely interested in entities of
some categories such as celebrity, movie, song, and look-alike but would have little interest in
some categories such as physics and biology. This observation suggests that category information
of entities could be used to uncover and model topic interest for entities, as it can help generalize
the user interest data observed on clicked entities and thus obtain better estimated interest on
unclicked or newly introduced entities. Similar to entity interest features, we also consider three
different topic interest features, which are defined as follows:

CTRt (u, eq , ec) =

∑
Tq ∈cat (eq)

∑
Tc ∈cat (ec) clickt (u,Tq ,Tc) + α∑

Tq ∈cat (eq)
∑
Tc ∈cat (ec) impressiont (u,Tq ,Tc) + α + β

, (14)

CTRt (eq , ec) =

∑
Tq ∈cat (eq)

∑
Tc ∈cat (ec) clickt (Tq ,Tc) + α∑

Tq ∈cat (eq)
∑
Tc ∈cat (ec) impressiont (Tq ,Tc) + α + β

, (15)

CTRt (ec) =

∑
Tc ∈cat (ec) clickt (Tc) + α∑

Tc ∈cat (ec) impressiont (Tc) + α + β
, (16)

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 17, No. 3, Article 25. Publication date: April 2018.

Learning to Recommend Related Entities With Serendipity for Web Search Users 25:9

Fig. 2. Architecture of a semantic similarity model based on CNN.

where cat (e) is a mapping function that maps an entity e to a set of categories of e . α and β are also
introduced to estimate a smoothed CTR. In our experiments, we set α = 0 and β = 100, and the top
2,000 most frequent categories of all entities in Baidu Baike were used. clickt (·) is the number of
aggregated clicks on a set of recommended entities under different conditions, and impressiont (·)
is the number of aggregated page impressions in which the set of recommended entities are
presented under different conditions. For example, clickt (u,Tq ,Tc) is calculated as follows:

clickt (u,Tq ,Tc) =
∑

êq ∈E (Tq)

∑
êc ∈E (Tc)

click (u, êq , êc), (17)

where E (Tc) is a function that returns a set of entities that have a same category Tc .

Semantic similarity. Semantics of texts has shown to be important for modeling interestingness
[18]. To better capture and measure the underlying interest between any two entities, the semantic
similarity between their corresponding descriptive sentences is calculated as their interestingness
score. Huang et al. [24] proposed a pairwise ranking model that employs a convolutional neu-
ral network (CNN) to automatically learn semantic representations for sentences and achieved
promising results in the experiments. Following Huang et al. [24], we also employ a CNN to map
a given sentence to its feature vector in a latent semantic space. The architecture of the CNN used
for sentence composition is shown in Figure 2(a). Given a sentence s that describes an entity e ,
a CNN is employed to obtain a distributed representation v (s) of s .6 First, words in the sentence
(a sentence with six words is used for demonstrating) are transformed into vector representa-
tions via word embedding matrix, which capture semantic information of words. Second, in the
convolutional layer, a set of filters is applied to a sliding window of length h (three is used for
demonstrating) over the sentence to extract a set of local features. To ensure that the filters can
be applied to every element of the input matrix, zero padding is applied to the input at both ends
prior to convolution. The filters are automatically learned during the training phase of the neural
network. Third, a max pooling layer performs max operation over a local neighborhood to retain
only the most useful local features produced by the convolutional layer. Finally, the output of the
max pooling layer is passed to a fully connected layer, which computes a nonlinear transformation
of these local features; here the sigmoid activation function is used. The network is trained using
pairwise rankings as visualized in Figure 2(b) following Huang et al. [24]. In the following, we
describe the training data acquisition and the training details.
To collect the pairwise training data for learning rankingmodels, we suppose that click (eq , e

i
c) >

click (eq , e
j
c), indicating that users are more interested in a recommended entity eic when searching

for eq , as e
i
c receivesmore aggregated clicks than e jc . Given a function S (e) that returns a descriptive

6Similar to Gao et al. [18], we also use the first sentence of a Baike article of e as the sentence s that describes e .

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 17, No. 3, Article 25. Publication date: April 2018.

25:10 J. Huang et al.

sentence s of a given entity e , we can obtain the descriptive sentences for the entities eq , e
i
c , and

e jc . For simplicity, we denote sq = S (eq), si = S (eic), and sj = S (e jc). Therefore, it is reasonable to
assume that the interestingness between a pair of sentences sq and si is higher than that of sq
and sj—that is, interest (sq , si) > interest (sq , sj). In this way, we can construct a training set that
consists of a set of triplets P = {〈sq , si , sj 〉}.
Figure 2(b) shows the network architecture of the proposed pairwise ranking model. This net-

work takes a triplet 〈sq , si , sj 〉 as input that consists of three sentences, which are fed independently
into three identical CNNs with shared architecture and parameters. Given a triplet 〈sq , si , sj 〉, our
goal is to learn a representation function v (·) for sq , si , and sj , and use the learned vector repre-
sentations to calculate the cosine similarity between two sentences such that given sq , the more
interesting sentence si can achieve a higher similarity score:

cos(v (sq),v (si)) > cos(v (sq),v (sj)),

∀sq , si , sj such that interest (sq , si) > interest (sq , sj).
(18)

Here the loss function is defined as the margin ranking loss:

Loss (sq , si , sj) = max(0, 1 − cos(v (sq),v (si)) + cos(v (sq),v (sj))). (19)

Given the preceding loss function, the network is trained by minimizing an objective function
over the training set P. Specifically, given a set of triplets P = {〈sq , si , sj 〉}, the representation
function v (·) can be learned by minimizing the following objective function:

min
W

∑
〈sq,si ,sj 〉∈P

Loss (sq , si , sj) + λ‖W ‖2, (20)

where λ is a regularization parameter used to improve the generalization of the learned ranking
model.W is the parameters of the representation function v (·).
After the model is trained, given any two entities eq and ec , we can compute the semantic

similarity between their corresponding descriptive sentences sq = S (eq) and sc = S (ec) as their
interestingness score, which is calculated as follows:

sims (eq , ec) = cos(v (sq),v (sc)) =
v (sq)

Tv (sc)

‖v (sq)‖‖v (sc)‖
. (21)

In our experiments, we used the entity panel logs from a 1-month period of the Baidu Web
search engine to compute these interestingness features.

Unexpectedness Features. To model unexpectedness, the following features are employed.

Relation awareness. If a recommended entity ec has already been discovered previously by a user
u when searching for a query eq , unexpectedness might be rarely encountered if ec was recom-
mended to u again when searching for eq . This observation suggests that undiscovered relations
between entities may have a higher chance to help a user get unexpected or surprisingly inter-
esting discoveries, as they could bring completely new knowledge about a domain to this user. To
better model unexpectedness, it is important to identify whether the relation between two entities
has already been discovered previously by a user. To this end, we use the historical click data to
model the relation awareness of a user. Here, a search click log and entity click log are both used
to collect the user historical click data. Given a query eq , we first extract all entities in the titles of
clicked documents from the search click log (denoted by Ect (u, eq)) and all clicked entities from
the entity click log (denoted by Ece (u, eq)) issued by a user u, and then we can obtain a set of
discovered relations between eq and other entities for the user u by merging them:

E (u, eq) = Ect (u, eq) ∪ Ece (u, eq). (22)

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 17, No. 3, Article 25. Publication date: April 2018.

Learning to Recommend Related Entities With Serendipity for Web Search Users 25:11

Then, given a query eq and a recommended entity ec , we can measure the relation awareness
of a user u for these two entities as follows:

Ra (u, eq , ec) =

{
1 if ec ∈ E (u, eq)
0 otherwise

. (23)

Intuitively, if the relation between a query eq and a recommended entity ec is well known to
many users, ec might provide rare opportunities for a user to get unexpected discoveries when she
searched for eq . For example, if “Michelle Obama” was recommended to a user when she searched
for “Barack Obama,” it might have a lower chance to help this user get unexpected discoveries, as
the two entities hold a well-known relation, and thus might be already well known to this user
and could not bring new knowledge to her. To better model unexpectedness, we further measure
the degree of awareness of the relation between two entities eq and ec by the number of users
who have clicked ec previously when searching for eq , which is denoted by clicku (eq , ec); a larger
number means that the given relation has already been discovered by the majority of users:

Ew (eq) = {ec ∈ R (eq) : clicku (eq , ec) ≥ Nu }, (24)

where Nu is a certain threshold used to estimate whether the relation between eq and ec was well
known to most users.7

Then we can measure the degree of awareness of the relation between a given query eq and a
recommended entity ec as follows:

Ra (eq , ec) =

{
1 if ec ∈ Ew (eq)
0 otherwise

. (25)

Content dissimilarity. It has been shown that unexpectedness can be increased by recommend-
ing to a user those items that are semantically far from the items that are familiar to the user
[26] or those items that depart from what she expects [1]. For this reason, we also introduce two
dissimilarity features to better model unexpectedness. The first one is the distance of an recom-
mended entity ec from the set of discovered relations E (u, eq) with respect to a user u and a query
eq , which is defined as follows:

dis(ec ,E (u, eq)) = min
ek ∈E (u,eq)

d (ec , ek), (26)

where d (·) is a distance measure between two entities. Here, the content similarity between
two entities estimated by Equation (10) is used to derive the distance between them—that is,
d (ec , ek) = 1 − simc (ec , ek). Intuitively, the higher dis(ec ,E (u, eq)) was, the more likely ec would
be unexpected to a user u when searching for the query eq .
However, the recommended entities that are completely dissimilar might be deemed to be irrel-

evant by a user and might be of little interest to the user. Hence, it is important to optimize the
degree of dissimilarity with interestingness. To alleviate this problem, we take a user’s interesting-
ness distribution on E (u, eq) into consideration and calculate the weighted average dissimilarity
as follows:

disa (ec ,E (u, eq)) =
∑

ej ∈E (u,eq)

¯CTR(u, eq , ej) · d (ej , ec), (27)

7Nu could be set to a fixed number for all queries or dynamic numbers related to different queries. In our experiments, we

observed better results by using the latter method. Specifically, Nu was set as follows: Nu =
1
2 (minec ∈R (eq) clicku (eq, ec)

+maxec ∈R (eq) clicku (eq, ec)).

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 17, No. 3, Article 25. Publication date: April 2018.

25:12 J. Huang et al.

where ¯CTR(u, eq , ej) is the normalization of CTR (u, eq , ej) that satisfies the following constraints:

∑
ej ∈R (eq)

¯CTR(u, eq , ej) = 1. (28)

In the same way, we can calculate the dissimilarity and the weighted average dissimilarity of
an recommended entity ec from the set of relations of eq that have already been discovered by the
majorities of users in the past, respectively:

dis(ec ,Ew (eq)) = min
ek ∈Ew (eq)

d (ec , ek), (29)

disa (ec ,Ew (eq)) =
∑

ej ∈Ew (eq)

¯CTR(eq , ej) · d (ej , ec), (30)

where ¯CTR (eq , ej) is the normalization of CTR (eq , ej) that satisfies the following constraints:

∑
ej ∈R (eq)

¯CTR (eq , ej) = 1. (31)

Diversity. The preceding dissimilarity features might promote more diverse entities in the rec-
ommendation list for a given query eq . However, if there is no need to provide diverse recom-
mendations for eq , these features might decrease the performance of the system. To alleviate this
problem, we use click entropy to model the diversity of a given query eq . A similar idea is also
proposed in Zhang et al. [42], where diversity is introduced into a music recommendation system
to help counteract user satiety with homogeneous recommendations. Specifically, the diversity of
a query in the context of entity recommendation is defined as follows:

div(eq) = ClickEntroy (eq) =
∑

ei ∈C (eq)
−P (ei |eq)log2P (ei |eq), (32)

where ClickEntroy (eq) is the click entropy [11] of query eq . C (eq) is the set of entities clicked on
query eq . P (ei |eq) is the percentage of the clicks on a recommended entity ei among all clicks on
query eq—that is,

P (ei |eq) =
click (eq , ei)∑

ej ∈C (eq) click (eq , ej)
, (33)

where click (eq , ei) is the number of clicks on a recommended entity ei on query eq in the entity
click log.
Click entropy is a direct indication of query click variation [11]. If all users click only one same

entity on query eq , then we have ClickEntroy (eq) = 0. Smaller click entropy indicates that the
majority of users agree with each other on a small number of entities. In such cases, we should
generate more homogeneous recommendations rather than more diverse recommendations for
this query. However, a large click entropy indicates that many entities were clicked for a given
query. This means that there may be two situations: (1) a user has clicked several entities on this
query to satisfy her diverse information needs and (2) different users have clicked different entities
on this query to explore diverse recommendations. In such cases, we should highlight more diverse
recommendations for this query.

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 17, No. 3, Article 25. Publication date: April 2018.

Learning to Recommend Related Entities With Serendipity for Web Search Users 25:13

3.2.3 Training. Here we use stochastic gradient boosted decision tree (GBDT) [14, 15] as the
LTR framework with the given features. The GBDT algorithm provides relative influence of vari-
ables [14] that can help further investigate the impact of different features. The higher the relative
influence value of a feature, the greater contribution it makes in the model building phase, and
thus the more important it is in the prediction process. The hyperparameters of GBDT: number of
trees, number of nodes, shrinkage rate, and sampling rate are tuned on an independent validation
set.8

The ranking model is trained by minimizing an objective function over the training set. More
specifically, given a training set that consists of a triplet with its corresponding interestingness la-

bel (i.e.,H = {(〈ui , e jq , ekc 〉,yi jk)}), our goal is to learn fromH a scoring function f (·) that measures

the probability of interestingness f (ui , e jq , e
k
c) for a given triplet 〈ui , e jq , ekc 〉. The scoring function

f (·) can be learned by minimizing the following objective function:

f̂ = argmin Loss (H), (34)

where the loss function Loss (H) is a cross entropy loss defined as follows:

Loss (H) = − log
∏

(〈u i ,e jq,ekc 〉,yi jk)∈H

f
(
ui , e jq , e

k
c

)yi jk · (1 − f
(
ui , e jq , e

k
c

)) (1−yi jk)

= −
∑

(〈u i ,e jq,ekc 〉,yi jk)∈H

yi jk · log f
(
ui , e jq , e

k
c

)
+ (1 − yi jk) · log

(
1 − f

(
ui , e jq , e

k
c

))
. (35)

4 EXPERIMENTAL SETUP

This section describes the datasets, baseline methods, and evaluation metrics in our experiments.

4.1 Experimental Data

We used the clickthrough data and search logs of the Baidu Web search engine to extract data
for learning and evaluating the ranking models. First, logs from a 1-month period were used to
extract the features defined in Section 3.2.2. Second, to prevent models from overfitting on the
training data, logs from the next 1-month period were used to generate the pointwise learning
targets using the method described in Section 3.2.1. In this way, the historical user behavior data
Hall could be obtained. Due to the huge search traffic, it is impractical to use all of the historical
data for training, as it would require considerable running time. Therefore, we randomly sampled
a small portion9 of data fromHall as the training setH , which consists of 106,712,857 instances of

(〈ui , e jq , ekc 〉,yi jk). InH , there are 35,413,304 positive instances and 71,299,553 negative instances.10

For the validation set and test set, we randomly sampled a validation setHv from a small portion
of logs during a 1-day period and a test setHt from a small portion of logs during a different 6-day
period.Hv was used to tune the parameters for the ranking models, andHt was used to perform

8We used a grid search to determine the optimal parameters of the ranking models in the feasible space of selected parame-

ters. We selected the number of trees among {500, 1000, . . . , 4000}, learning rate among {0.001, 0.005, . . . , 0.5}, and tree
depth among {3, 4, 5, 6}. We tuned the GBDT models on the validation set, and the models with the parameter settings

that best performed on the validation set were selected. The parameters used in the experiments are as follows: number

of trees = 2,500, tree depth = 5, and learning rate = 0.2. To prevent the models from overfitting, a sampling rate with the

probability of 0.5 is applied.
9We are not able to provide details about the sampled percentages for confidentiality reasons.
10Since the label distribution in the historical data is highly imbalanced (i.e., Hall contains much more negative instances

than positive instances), the instances were randomly sampled under the constraint that the amount of the negative in-

stances cannot exceed three times (3×) the amount of positive instances, in which if the interestingness label yi jk of a

triplet 〈ui , e jq, ekc 〉 equals 1, it is a positive instance, and otherwise, it is a negative instance.

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 17, No. 3, Article 25. Publication date: April 2018.

25:14 J. Huang et al.

the offline evaluation of the ranking models. Hv /Ht consists of 8,311,168/48,117,012 instances of

(〈ui , e jq , ekc 〉,yi jk), respectively.
We also performed an online evaluation by conducting an online controlled experiment. To this

end, we randomly sampled 100,000 queries from the query logs of the Baidu Web search engine
and extracted the queries that can be linked with their corresponding entities in a knowledge
graph by using the entity linking method proposed in Han et al. [21] based on the search context
information. Then a test set of 33,836 entity queries was obtained and used in the online evaluation,
which is denoted by T . For each entity in T , we used the method described in Section 3.1 to find
related entities for it, in which the Ns and Nd used in our experiments were set to 1,000. For online
evaluation, we conducted the online controlled experiments during a 4-day period, and a total of
5,283,120 users were involved in the experiments.

4.2 Baseline Methods

To evaluate the proposed method, five approaches were selected as baseline methods for compar-
ison. The first four baseline methods were selected following Bi et al. [4], and the fifth baseline
was proposed by Bi et al. [4]:

Random:This baselinemethod is a naive algorithm that randomly ranks the related entities
with respect to a user and the query.
Co-click: The co-click signal by itself has been shown to be effective and the strongest
baseline method for entity recommendation [4]. The basic idea is that if two entities are
frequently co-clicked, it is reasonable that an entity should be recommended for another
entity that is issued as a query. Specifically, co-click ranks the candidate entities based on
the number of their co-occurrences with a given query in the click log.
CTR-model: This baseline only utilizes the CTR features of entities (i.e., f 5, f 6, and f 7) to
build the ranking model following Bi et al. [4].
Production: This baseline represents the entity recommendation approach currently em-
ployed by the Baidu Web search engine, which reflects the state of the art in the context of
entity recommendation.
TEM: This baseline is a personalized entity recommendation method proposed by Bi et al.
[4]. However, this method has a limitation that it can be applied only when the target do-
main is known, as it requires a rich set of domain-dependent entity features to be successful
in recommending relevant and personalized entities. By contrast, we do not focus on any
particular domain and aim to provide entity recommendations with serendipity for any
type of entity. Therefore, domain-independent features are crucial for building our pro-
posed recommendation model, making it difficult to make a straightforward comparison
with the method proposed by Bi et al. [4]. Hence, for comparison purposes, we omit a set of
features specific to film entities used in Bi et al. [4] and only choose the equivalent domain-
independent features11 in the experiments.

4.3 Evaluation Metrics

We conducted both offline evaluation and online evaluation to examine the effectiveness of our
proposed learning to recommend framework.

4.3.1 Offline Evaluation. The offline evaluation aims to assess the quality of a ranked list of
entities related to a given query eq issued by a user u. Two metrics are used for offline evaluation:

11Specifically, the features f 1, f 2, f 5, f 6, and f 7 in Table 1 are selected for use.

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 17, No. 3, Article 25. Publication date: April 2018.

Learning to Recommend Related Entities With Serendipity for Web Search Users 25:15

discounted cumulative gain (DCG) and mean reciprocal rank (MRR). To investigate the effective-
ness with respect to different rank positions, we adopt DCG and MRR at various cut-off points
to measure the quality of the ranked entities. In our experiments, we will report different rank
positions in {1, 5, 10, 15}, respectively.

DCG is a measure of ranking quality in information retrieval and has been widely used to assess
the relevance of search results [27]. For a ranked list of entities, we use the following formulation
to compute the DCG accumulated at a particular rank position p, which places stronger emphasis
on retrieving relevant entities:

DCGp =

p∑
i=1

2r el
uq
i − 1

log2 (i + 1)
, (36)

where rel
uq
i ∈ {0, 1} is the binary relevance (1 for relevant and 0 for irrelevant) of the entity ranked

at position i with respect to user u and query eq . In our experiments, the overall DCG is calculated
by averaging over all the test instances in the test setHt , and we denote this averaged DCG value
at a particular rank position p using the same symbol DCGp .
We also use the standard MRR to evaluate the ranking quality following Bi et al. [4] and Yu

et al. [40]. The reciprocal rank of a ranked list is the multiplicative inverse of the rank at which
the first relevant entity is retrieved. The top-p MRR score is the average of the reciprocal ranks of
the ranked lists for each test instance in the test setHt :

MRRp =
1

|Ht |

|Ht |∑
j=1

1

rank (e
uq
j)
, (37)

where e
uq
j is the ground truth entity in the j-th test with respect to user u and query eq , and

rank (e
uq
j) represents the rank of e

uq
j determined by a certain ranking model, which will be ∞ if

the ground truth entity e
uq
j is not in the top-p ranked results.

4.3.2 Online Evaluation. To quantify the user engagement of a recommendation model, a suit-
able way is to examine the CTR of entities recommended by this model. CTR is an effective metric
used to evaluate the performance of an online service, such as a backend recommendation system
[10], sponsored search advertising [20], and the utility of a Web search result page [33]. Online
controlled experiments are widely used to make data-driven decisions by running A/B tests12 at
search engine companies [28]. In our experiments, the goal of an online controlled experiment is to
identify enhancements to the recommendation models that increase or maximize the CTR for the
recommendation results. From the test results, we can evaluate the user engagement of different
models by comparing their CTR values. A higher CTR would predict higher user engagement.
In an online controlled experiment, users who are searching for the given queries are randomly

and evenly split into either a control or treatment group. In which, the split is carried out in a
persistent manner, which ensures that a user is divided into the same group and receives the same
experience in multiple visits. We implement five control groups for individual baseline methods
and a treatment group for our proposed method. In each group, when a user u is searching for
a query eq in the test set T , a corresponding recommendation model is employed to generate a
ranked list of entities with respect to useru and query eq . Then, the list of entities is recommended
on the right panel of the search engine result page13 for user u, and individual user behavior and
interactions with each recommended entity are instrumented. Finally, we run the experiment for

12https://en.wikipedia.org/wiki/A/B_testing.
13Note that in the controlled experiments, the search result pages of all control and treatment groups with respect to a

same query differ only in the region of their entity recommendation results.

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 17, No. 3, Article 25. Publication date: April 2018.

https://en.wikipedia.org/wiki/A/B_testing

25:16 J. Huang et al.

Table 2. Offline Evaluation Results of the Proposed Method and Five Baseline Methods

DCG MRR

DCG1 DCG5 DCG10 DCG15 MRR5 MRR10 MRR15
Random 0.1230 0.3519 0.4893 0.5258 0.2643 0.3108 0.3195

Co-click 0.2308 0.4848 0.5898 0.6146 0.3868 0.4211 0.4269

CTR-model 0.2701 0.5319 0.6273 0.6464 0.4299 0.4607 0.4651

Production 0.2712 0.5276 0.6222 0.6450 0.4281 0.4587 0.4639

TEM 0.2725 0.5349 0.6295 0.6484 0.4326 0.4631 0.4674

LTRC 0.2821�∗ 0.5490�∗ 0.6406�∗ 0.6575�∗ 0.4447�∗ 0.4742�∗ 0.4780�∗

Note: �∗ indicates statistical significance over all other results in the same column using a t -test for p < 0.001.

a period of time (e.g., 3 days), and the user behavior data are collected. The user engagement of
a recommendation model involved in the controlled experiment is evaluated by the CTR of its
corresponding group, which is computed as follows:

CTR =

∑
eq ∈T

∑
ec ∈R (eq) click (eq , ec)∑

eq ∈T
∑

ec ∈R (eq) impression(eq , ec)
, (38)

where R (eq) is the set of recommended entities for a query eq ∈ T , click (eq , ec) is the number of
clicks on a certain recommended entity ec on query eq , and impression(eq , ec) is the number of
page impressions in which ec is presented when searching for eq .
We implemented online controlled experiments for our proposed method and all baseline meth-

ods. In our experiments, for a certain group (a control group or a treatment group), a corresponding
recommendation model was employed to generate a ranked list of entities14 for each query eq in
the test set T from the set of related entities R (eq) of eq .

5 RESULTS AND ANALYSIS

We report empirical results, model comparisons, andmodel analysis in this section. To complywith
the company’s nondisclosure policy, we normalized the raw CTR values by the maximum CTR
value and reported only relative CTR values. As depicted in the evaluation results in each table
and figure, the statistical significance is indicated using a paired two-tailed t-test, and boldface
indicates the highest score with respect to each metric. For CTR results, the t-test is performed on
the raw CTR values. For offline evaluation results, we omit MRR1 due to it is equivalent to DCG1

in our experiments.

5.1 Model Comparisons

In this section, we compare our proposed model (denoted by LTRC) to baseline methods.
First, we investigate the quality of recommendation results generated by each method. Table 2

shows the offline evaluation results of the proposed method and five baseline methods. It is ob-
served from the results that the other fivemethods all perform significantly better than the Random
method. However, Co-click outperforms Random by a smaller margin than the other four methods
do. Themain reason is thatCo-click is based on the number of entity co-occurrences in the click log,
which would be effective for clicked entities that have previously been observed in the user log be-
fore. Therefore, it inevitably suffers from the cold start problem for unclicked or newly introduced
entities. It is also observed that CTR-model, Production, and TEM achieve significant improvement

14In our experiments, the number of related entities presented in each page impression changes dynamically according to

a user’s screen resolution, which normally ranges from 9 to 16.

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 17, No. 3, Article 25. Publication date: April 2018.

Learning to Recommend Related Entities With Serendipity for Web Search Users 25:17

Fig. 3. CTR results of the proposed method and five baseline methods. � indicates statistical significance
over all other results using a t-test for p < 0.05.

over the Random and Co-clickmethods. In addition, CTR-model, Production, and TEM yield similar
results, as they generate entity recommendations mainly based on the CTR signals. This shows
the great effectiveness of the user clickthrough information derived from the entity click log on
building an entity recommendation system. Furthermore, the results show that LTRC significantly
outperforms all baseline methods by a large margin in terms of both DCG and MRR at various
rank positions, which demonstrates that LTRC can provide entity recommendations of the highest
quality to users. This also confirms the effectiveness of the proposed framework, which is designed
to boost the serendipity performance by leveraging the signals from the three sets of relatedness,
interestingness, and unexpectedness features that correlate with the three aspects of serendipity.
Second, we investigate the user engagement of recommendation results generated by each

method. Figure 3 shows the online evaluation results of the proposed method and five baseline
methods. From this figure, we can see that LTRC significantly outperforms all baseline methods
and achieves the highest CTR score, which demonstrates that LTRC can significantly improve
user engagement against all baseline methods by recommending entities that are of most interest
to users.

5.2 Model Analysis

In this section, we provide an analysis of the proposed model LTRC and the impact of different
features used in this model.
To examine the effectiveness of the proposed model, variations of learning to recommend mod-

els with different combinations of feature sets are implemented for comparison. For simplicity, we
denote the features in the sets of “Relatedness features,” “Interestingness features,” and “Unexpect-
edness features” described in Table 1 using the symbols R, I , andU , respectively. All variations are
listed as follows:

LTRCR , LTRCI , LTRCU : These models are trained on individual feature sets R, I , and U ,
respectively.
LTRCR+I , LTRCR+U , LTRCI +U : These models are trained on different combinations of
two feature sets (e.g., R + I denotes the combination of two feature sets R and I).
LTRC: This model utilizes all three feature sets (i.e., R, I , and U).

Table 3 shows the evaluation results of each model. From the results, we make the following
observations after investigating the effectiveness of individual models.
First, LTRCI achieves the highest scores in comparison with the other two variations LTRCU

and LTRCR , which shows that the set of interestingness features is the most powerful feature set
in our model. Moreover, the performance of the model is significantly decreased after removing
the feature set I (from LTRC to LTRCR+U); this further confirms that the set of interestingness

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 17, No. 3, Article 25. Publication date: April 2018.

25:18 J. Huang et al.

Table 3. Offline Evaluation Results of Different Models

DCG MRR

DCG1 DCG5 DCG10 DCG15 MRR5 MRR10 MRR15
LTRCR 0.1687 0.4101 0.5335 0.5644 0.3174 0.3586 0.3659

LTRCI 0.2780 0.5423 0.6355 0.6532 0.4390 0.4690 0.4730

LTRCU 0.2185 0.4822 0.5865 0.6102 0.3809 0.4151 0.4206

LTRCR+I 0.2788 0.5443 0.6370 0.6545 0.4407 0.4705 0.4745

LTRCR+U 0.2277 0.4905 0.5934 0.6164 0.3894 0.4230 0.4284

LTRCI+U 0.2811 0.5485 0.6398 0.6569 0.4441 0.4735 0.4773

LTRC 0.2821� 0.5490� 0.6406� 0.6575� 0.4447� 0.4742� 0.4780�

Note: To measure the improvement of LTRC over all other models, we depict the statistical significance over all other results

in the same column using a t -test for p < 0.01 with � and for p < 0.05 with �.

features plays the most important role in improving the quality of recommendation results. The
main reason is that compared to the other two feature sets, the set of interestingness features is
more effective in not only capturing underlying correlations among users, queries, and entities
but also in uncovering interesting connections between entities. This also demonstrates that user
click signals derived from the entity click log are important for modeling interestingness, as all
interestingness features are learned from the entity clickthrough data.
Second, the set of unexpectedness features can help to improve the quality of recommendation

results, as it obtains a significant improvement in model performance after adding feature set U
(from LTRCR+I to LTRC, and the paired t-test between them has p-value <0.01). This confirms
the effectiveness of introducing unexpectedness into an entity recommendation system. The main
reason is that the unexpectedness features in U can help to avoid finding and recommending
entities that are already known by most users or stray too far from what they expect and bring in
new signals for recommendation that are not presented in the other two feature sets.
Third, the set of relatedness features can also help to improve the recommendation quality, as

the paired t-test performed between LTRCI+U and LTRC shows a p-value <0.05. However, the
difference between the performance of LTRCI+U and LTRC is very marginal. Furthermore, we do
observe that feature set R makes relatively lower performance improvement in comparison with
the other two feature sets I and U . This is because the features in R purely rely on the content
information of entities, whereas the features in I and U make use of rich user click information.
This observation suggests that it is important to use the user click information to learn effective
features for uncovering the interesting or underlying connections among users, queries, and
entities that cannot be modeled by content information. It also shows the great potential of the
user click information on building an entity recommendation system.
To further investigate the impact of individual features, we calculate the relative importance

scores for all of the features. We assign the most influential feature a score of 100 and scale the
importance scores of other features accordingly. Figure 4 shows the relative importance scores for
all features. From the top 10 features, we can see that these features all play important roles in
the model LTRC, and the learning to recommend framework can benefit from the combination of
the features in R, I , and U . The superiority of three unexpectedness features (f 18, f 17, and f 16)
further suggests that it is important to introduce unexpectedness into an entity recommendation
model. The user-specific features (f 8, f 14, f 5, f 13, and f 12) used here are accurate predictors of
personalization, but the influence of them is much lower. The main reason is that these features
are only available for user-query-entity triples that have been observed in the past in search logs.

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 17, No. 3, Article 25. Publication date: April 2018.

Learning to Recommend Related Entities With Serendipity for Web Search Users 25:19

Fig. 4. Importance scores of all features. The feature sets of individual features are depicted under them.

Therefore, the coverage of them is limited to the clicked ones, making them hardly perform well
on the click-absent ones.

6 RELATEDWORK

Previous work that is the closest to our task is recommending related entities with respect to a
user and/or a query. Previous work mainly focus on providing a user with the most relevant [5]
and/or personalized [4, 13, 40] entity recommendations that score highly against the query and/or
the user’s preference. However, none of them address the problem of boosting recommendation
performance in terms of serendipity that has been demonstrated to be critical for a satisfying and
engaging user experience of recommendation systems [1, 37]. Moreover, the methods proposed
in Bi et al. [4], Blanco et al. [5], and Yu et al. [40] have a limitation that they can be applied only
when the target domain is known, as they require a rich set of domain-dependent entity features
derived from a knowledge graph to be successful in recommending relevant and/or personalized
entities. By contrast, we do not focus on any particular domain and aim to provide entity rec-
ommendations with serendipity for any type of entity. Finally, Fernández-Tobías and Blanco [13]
proposed a domain-agnostic method that only exploits query log data to proactively recommend
relevant entities for a user’s search session in a personalized fashion. Our work is different in that
we aim to provide entity recommendations with serendipity related to both a given query and a
user rather than recommend entities for a user’s search session.
A research topic closely related to our work is the task of increasing serendipity of a traditional

item-based recommender system, although the definitions of serendipity and the research tasks
are quite different from our work. Adamopoulos and Tuzhilin [1] proposed to increase serendipity
by recommending to users those items that depart from what they expect. Iaquinta et al. [26]
proposed to increase serendipity by recommending novel items that are semantically far from a
user’s profile. Zhang et al. [42] proposed to inject serendipity into recommendations while limiting
the impact on accuracy. Although the definitions of serendipity are not directly adaptable in the
context of entity recommendation, the ideas proposed to increase serendipity in these studies can
be adopted as features for our proposed learning to recommend framework, which have been
shown to be strong signals that are effective for finding unexpected items.

7 CONCLUSIONS

In this article, we study the problem of recommending entities with serendipity related to both
a given query and a user. We define the concept of serendipity in the context of entity rec-
ommendation. We propose a learning to recommend framework that employs three different
sets of features that correlate with the three aspects of serendipity. Extensive experiments are

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 17, No. 3, Article 25. Publication date: April 2018.

25:20 J. Huang et al.

conducted on large-scale, real-world datasets collected from a widely used commercial Web search
engine. The experiments show that our method significantly outperforms multiple strong baseline
methods. In addition, online controlled experiments conducted on a commercial Web search en-
gine demonstrate that our method significantly improves user engagement against all baseline
methods. This further confirms the effectiveness of the proposed framework.
As futurework, we plan to boost the performance of the proposed learning to recommend frame-

work in two directions: exploring more ways to find related entities and introducing more features
to rank the entities that uncover some interesting and unexpected connections with respect to
a given query and a user. We are also interested in captioning the recommended entities, par-
ticularly the serendipitous entities, to help users better figure out the connections between the
recommended entities and a query as suggested by Huang et al. [24] and Huang et al. [25].

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their insightful comments. We
also thank Wei Zhang for his assistance in preparing the experimental data. We wish to thank
Mingming Sun for his comments on an earlier draft of this article.

REFERENCES

[1] Panagiotis Adamopoulos and Alexander Tuzhilin. 2014. On unexpectedness in recommender systems: Or how to

better expect the unexpected. ACM Transactions on Intelligent Systems and Technology 5, 4, 54:1–54:32.

[2] Nitish Aggarwal, Peter Mika, Roi Blanco, and Paul Buitelaar. 2015. Insights into entity recommendation in Web

search. In Proceedings of the International Semantic Web Conference (ISWC’15).

[3] P. André, M. C. Schraefel, J. Teevan, and S. T. Dumais. 2009. Discovery is never by chance: Designing for

(un)serendipity. In Proceedings of the 7th ACM Conference on Creativity and Cognition (C&C’09). 305–314.

[4] Bin Bi, Hao Ma, Bo-June (Paul) Hsu, Wei Chu, Kuansan Wang, and Junghoo Cho. 2015. Learning to recommend

related entities to search users. In Proceedings of the 8th ACM International Conference onWeb Search and Data Mining

(WSDM’15). 139–148.

[5] Roi Blanco, Berkant Barla Cambazoglu, Peter Mika, and Nicolas Torzec. 2013. Entity recommendations inWeb search.

In Proceedings of the 12th International Semantic Web Conference (ISWC’13). 33–48.

[6] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. 2003. Latent Dirichlet allocation. Journal of Machine Learning

Research 3, 4–5, 993–1022.

[7] Ilaria Bordino, Yelena Mejova, and Mounia Lalmas. 2013. Penguins in sweaters, or serendipitous entity search on

user-generated content. In Proceedings of the 22nd ACM International Conference on Information and Knowledge Man-

agement (CIKM’13). 109–118.

[8] Marc Bron, Krisztian Balog, and Maarten de Rijke. 2009. Related entity finding based on co-occurrence. In Proceedings

of the 2009 Text REtrieval Conference (TREC’09).

[9] Mark Claypool, Phong Le, Makoto Wased, and David Brown. 2001. Implicit interest indicators. In Proceedings of the

6th International Conference on Intelligent User Interfaces. 33–40.

[10] James Davidson, Benjamin Liebald, Junning Liu, Palash Nandy, and Taylor Van Vleet. 2010. The YouTube

video recommendation system. In Proceedings of the 4th ACM Conference on Recommender Systems (RecSys’10).

293–296.

[11] Zhicheng Dou, Ruihua Song, and Ji-Rong Wen. 2007. A large-scale evaluation and analysis of personalized search

strategies. In Proceedings of the 16th International Conference on World Wide Web (WWW’07). 581–590.

[12] Zhicheng Dou, Ruihua Song, Xiaojie Yuan, and Ji-RongWen. 2008. Are click-through data adequate for learningWeb

search rankings? In Proceedings of the 17th ACM Conference on Information and Knowledge Management (CIKM’08).

73–82.

[13] Ignacio Fernández-Tobías and Roi Blanco. 2016. Memory-based recommendations of entities for Web search users.

In Proceedings of the 25th ACM International Conference on Information and Knowledge Management (CIKM’16).

35–44.

[14] Jerome H. Friedman. 2000. Greedy function approximation: A gradient boosting machine. Annals of Statistics 29,

1189–1232.

[15] Jerome H. Friedman. 2002. Stochastic gradient boosting. Computational Statistics and Data Analysis 38, 4, 367–378.

[16] Michael Gamon, Arjun Mukherjee, and Patrick Pantel. 2014. Predicting interesting things in text. In Proceedings of

the 25th International Conference on Computational Linguistics (COLING’14). 1477–1488.

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 17, No. 3, Article 25. Publication date: April 2018.

Learning to Recommend Related Entities With Serendipity for Web Search Users 25:21

[17] Jianfeng Gao, Xiaodong He, and Jian-Yun Nie. 2010. Clickthrough-based translation models for Web search: From

word models to phrase models. In Proceedings of the 19th ACM International Conference on Information and Knowledge

Management (CIKM’10). 1139–1148.

[18] Jianfeng Gao, Patrick Pantel, Michael Gamon, Xiaodong He, and Li Deng. 2014. Modeling interestingness with

deep neural networks. In Proceedings of the 2014 Conference on Empirical Methods on Natural Language Processing

(EMNLP’14). 2–13.

[19] Mouzhi Ge, Carla Delgado-Battenfeld, and Dietmar Jannach. 2010. Beyond accuracy: Evaluating recommender sys-

tems by coverage and serendipity. In Proceedings of the 4th ACM Conference on Recommender Systems (RecSys’10).

257–260.

[20] Thore Graepel, Joaquin Q. Candela, Thomas Borchert, and Ralf Herbrich. 2010.Web-scale Bayesian click-through rate

prediction for sponsored search advertising in Microsoft’s Bing search engine. In Proceedings of the 27th International

Conference on Machine Learning (ICML’10). 13–20.

[21] Xianpei Han, Le Sun, and Jun Zhao. 2011. Collective entity linking in Web text: A graph-based method. In Proceed-

ings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’11).

765–774.

[22] YunlongHe, Jiliang Tang, Hua Ouyang, Changsung Kang, Dawei Yin, and Yi Chang. 2016. Learning to rewrite queries.

In Proceedings of the 25th ACM International Conference on Information and Knowledge Management (CIKM’16).

1443–1452.

[23] Jonathan L. Herlocker, Joseph A. Konstan, Loren G. Terveen, and John T. Riedl. 2004. Evaluating collaborative filtering

recommender systems. ACM Transactions on Information Systems 22, 1, 5–53.

[24] Jizhou Huang, Wei Zhang, Shiqi Zhao, Shiqiang Ding, and Haifeng Wang. 2017. Learning to explain entity rela-

tionships by pairwise ranking with convolutional neural networks. In Proceedings of the 2017 International Joint

Conference on Artificial Intelligence (IJCAI’17). 4018–4025.

[25] Jizhou Huang, Shiqi Zhao, Shiqiang Ding, Haiyang Wu, Mingming Sun, and Haifeng Wang. 2016. Generating rec-

ommendation evidence using translation model. In Proceedings of the 2016 International Joint Conference on Artificial

Intelligence (IJCAI’16). 2810–2816.

[26] Leo Iaquinta, Marco De Gemmis, Pasquale Lops, Giovanni Semeraro, Michele Filannino, and Piero Molino. 2008. In-

troducing serendipity in a content-based recommender system. In Proceedings of the 2008 8th International Conference

on Hybrid Intelligent Systems (HIS’08). 168–173.

[27] Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumulated gain-based evaluation of IR techniques. ACM Transactions

on Information Systems 20, 4, 422–446.

[28] Ron Kohavi, Alex Deng, Brian Frasca, Roger Longbotham, Toby Walker, and Ya Xu. 2012. Trustworthy online con-

trolled experiments: Five puzzling outcomes explained. In Proceedings of the 18th International Conference on Knowl-

edge Discovery and Data Mining (SIGKDD’12). 786–794.

[29] Tie-Yan Liu. 2009. Learning to rank for information retrieval. Foundations and Trends in Information Retrieval 3, 3,

225–331.

[30] Hao Ma, Haixuan Yang, Irwin King, and Michael R. Lyu. 2008. Learning latent semantic relations from clickthrough

data for query suggestion. In Proceedings of the 17th ACM International Conference on Information and Knowledge

Management (CIKM’08). 709–718.

[31] Florian Mueller and Andrea Lockerd. 2001. Cheese: Tracking mouse movement activity on Websites, a tool for user

modeling. In CHI’01 Extended Abstracts on Human Factors in Computing Systems. 279–280.

[32] Umut Ozertem, Olivier Chapelle, Pinar Donmez, and Emre Velipasaoglu. 2012. Learning to suggest: A machine learn-

ing framework for ranking query suggestions. In Proceedings of the 35th International ACM SIGIR Conference on Re-

search and Development in Information Retrieval (SIGIR’12). 25–34.

[33] Ashok Kumar Ponnuswami, Kumaresh Pattabiraman, Qiang Wu, Ran Gilad-Bachrach, and Tapas Kanungo. 2011. On

composition of a federated Web search result page: Using online users to provide pairwise preference for heteroge-

neous verticals. In Proceedings of the 4th ACM International Conference on Web Search and Data Mining (WSDM’11).

715–724.

[34] Francesco Ricci, Lior Rokach, Bracha Shapira, and Paul B. Kantor. 2011. Recommender Systems Handbook. Springer.

[35] Upendra Shardanand and Pattie Maes. 1995. Social information filtering: Algorithms for automating “word of mouth.”

In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. 210–217.

[36] Beerud Sheth and Pattie Maes. 1993. Evolving agents for personalized information filtering. In Proceedings of the 9th

Conference on Artificial Intelligence for Applications. 345–352.

[37] Linqi Song, Cem Tekin, andMihaela Van Der Schaar. 2014. Clustering based online learning in recommender systems:

A bandit approach. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing

(ICASSP’14). 4528–4532.

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 17, No. 3, Article 25. Publication date: April 2018.

25:22 J. Huang et al.

[38] XueruiWang,Wei Li, Ying Cui, Ruofei Zhang, and JianchangMao. 2011. Click-through rate estimation for rare events

in online advertising. In Online Multimedia Advertising: Techniques and Technologies. IGI Global, 1–12.

[39] Zi Yang and Eric Nyberg. 2015. Leveraging procedural knowledge for task-oriented search. In Proceedings of the 38th

International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’15). 513–522.

[40] Xiao Yu, Hao Ma, Bo-June Paul Hsu, and Jiawei Han. 2014. On building entity recommender systems using user click

log and freebase knowledge. In Proceedings of the 7th ACM International Conference on Web Search and Data Mining

(WSDM’14). 263–272.

[41] Yi Zhang, Jamie Callan, and Thomas Minka. 2002. Novelty and redundancy detection in adaptive filtering. In Pro-

ceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval

(SIGIR’02). 81–88.

[42] Yuan Cao Zhang, Diarmuid Séaghdha, Daniele Quercia, and Tamas Jambor. 2012. Auralist: Introducing serendipity

into music recommendation. In Proceedings of the 5th ACM International Conference on Web Search and Data Mining

(WSDM’12). 13–22.

Received April 2017; revised September 2017; accepted February 2018

ACM Trans. Asian Low-Resour. Lang. Inf. Process., Vol. 17, No. 3, Article 25. Publication date: April 2018.

