A Simple Tutorial on Theano

Jiang Guo
Outline

• What’s Theano?
• How to use Theano?
 – Basic Usage: How to write a theano program
 – Advanced Usage: Manipulating symbolic expressions
• Case study 1: Logistic Regression
• Case study 2: Multi-layer Perceptron
• Case study 3: Recurrent Neural Network
WHAT’S THEANO?
Theano is many things

- Programming Language
- Linear Algebra Compiler
- Python library
 - Define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays.

Note: Theano is not a machine learning toolkit, but a mathematical toolkit that makes building downstream machine learning models easier.
 - Pylearn2
Theano features

• Tight integration with NumPy
• Transparent use of a GPU
• Efficient symbolic differentiation
• Speed and stability optimizations
• Dynamic C code generation
Project Status

• Theano has been developed and used since 2008, by LISA lab at the University of Montreal (led by Yoshua Bengio)
 – Citation: 202 (LTP: 88)
• Deep Learning Tutorials
• Machine learning library built upon Theano
 – Pylearn2
• Good user documentation
 – http://deeplearning.net/software/theano/
• Open-source on Github
Basic Usage

HOW TO USE THEANO?
Python in 1 Slide

• Interpreted language
• OO and scripting language
• Emphasizes code readability
• Large and comprehensive standard library
• Indentation for block delimiters
• Dynamic type
• Dictionary
 – d={'key1':‘val1’, ‘key2’:42, …}
• List comprehension
 – [i+3 for i in range(10)]
NumPy in 1 Slide

• Basic scientific computing package in Python on the CPU

• A powerful N-dimensional array object
 – ndarray

• Sophisticated “broadcasting” functions
 – rand(4,5) * rand(1,5) -> mat(4,5)
 – rand(4,5) * rand(4,1) -> mat(4,5)
 – rand(4,5) * rand(5) -> mat(4,5)

• Linear algebra, Fourier transform and pseudorandom number generation
Overview of Theano

• Using Theano
 – Symbolically define mathematical functions
 • Automatically derive gradient expressions
 – Compile expressions into executable functions
 • `theano.function([input params], output)`
 – Execute expression

• Related libraries/toolkits:
 – Matlab, sympy, Mathematica
Installing Theano

• Requirements
 – OS: Linux, Mac OS X, Windows
 – Python: >= 2.6
 – Numpy, Scipy, BLAS

• `pip install [--upgrade] theano`

• `easy_install [--upgrade] theano`

• Install from source code
Building Symbolic Expressions

• Tensor
 – Scalars
 – Vectors
 – Matrices
 – Tensors
• Reductions
• Dimshuffle
Tensor

• Tensor: multi-dimensional array
 – Order of tensor: dimensionality
 • 0^{th}-order tensor = scalar
 • 1^{th}-order tensor = vector
 • 2^{th}-order tensor = matrix
 • ...
Scalar math

from theano import tensor as T

Note that theano is fully typed
x = T.scalar()
y = T.scalar()
z = x + y
w = z * x
a = T.sqrt(w)
b = T.exp(a)
c = a ** b
d = T.log(c)
Vector Math

from theano import tensor as T

x = T.vector()
y = T.vector()

Scalar math applied elementwise
a = x * y

vector dot product
b = T.dot(x, y)
Matrix Math

from theano import tensor as T

x = T.matrix()
y = T.matrix()
a = T.vector()
Matrix-matrix product
b = T.dot(x, y)
Matrix-vector product
c = T.dot(x, a)
Tensors

- Dimensionality defined by length of “broadcastable” argument
- Can add (or do other elemwise op) on two tensors with same dimensionality
- Duplicate tensors along broadcastable axes to make size match

```
from theano import import tensor as T

tensor3 = T.TensorType(broadcastable=(False, False, False), dtype='float32')
x = tensor3()
```
from theano import tensor as T

tensor3 = T.TensorType(broadcastable=(False, False, False), dtype='float32')
x = tensor3()

total = x.sum()
marginals = x.sum(axis=(0, 2))
mx = x.max(axis=1)
from theano import tensor as T

tensor3 = T.TensorType(broadcastable=(False, False, False), dtype='float32')
x = tensor3()
y = x.dimshuffle((2,1,0))

a = T.matrix()
b = a.T
same as b
c = a.dimshuffle((1,0))
Adding to larger tensor
d = a.dimshuffle((0,1,'x'))
e = a + d
zeros_like and ones_like

• `zeros_like(x)` returns a symbolic tensor with the same shape and dtype as `x`, but with every element to 0

• `ones_like(x)` is the same thing, but with 1s
Compiling and running expressions

- `theano.function`
- shared variables and updates
- compilation modes
- compilation for GPU
- optimizations
```python
>>> from theano import tensor as T
>>> x = T.scalar()
>>> y = T.scalar()

>>> from theano import function
>>> # first arg is list of SYMBOLIC inputs
>>> # second arg is SYMBOLIC output
>>> f = function([x, y], x + y)

>>> # Call it with NUMERICAL values
>>> # Get a NUMERICAL output
>>> f(1., 2.)
array(3.0)
```
Shared variables

• A “shared variable” is a buffer that stores a numerical value for a theano variable
 – think as a global variable
• Modify outside function with get_value and set_value
>>> from theano import shared
>>> x = shared(0.)
>>> from theano.compat.python2x import OrderedDict
>>> updates[x] = x + 1

>>> f = T.function([], updates=updates)

>>> f() # updates
>>> x.get_value()

>>> x.set_value(100.)
>>> f() # updates
>>> x.get_value()
Compilation modes

• Can compile in different modes to get different kinds of programs
• Can specify these modes very precisely with arguments to `theano.function`
• Can use a few quick presets with environment variable flags
Example preset compilation modes

- FAST_RUN
- FAST_COMPILE
- DEBUG_MODE
Optimizations

• Theano changes the symbolic expressions you write before converting them to C code

• It makes them faster
 \[-(x+y) + (x+y) \rightarrow 2 \times (x+y)\]

• It makes them more stable
 \[-\exp(a) / \exp(a).\text{sum(axis=1)} \rightarrow \text{softmax}(a)\]
Optimizations

• Sometimes optimizations discard error checking and produce incorrect output rather than an exception

```python
gen = T.scalar()
f = function([x], x/x)
f(0.)
array(1.0)
```
Advanced Usage

HOW TO USE THEANO?
Manipulating Symbolic Expressions

- Theano Graphs
 - variable nodes
 - op nodes
 - apply nodes
 - type nodes

\[x = T.dmatrix('x') \]
\[y = T.dmatrix('y') \]
\[z = x + y \]
Manipulating Symbolic Expressions

- Automatic differentiation
 - `tensor.grad(func, [params])`

```python
>>> from theano import pp
>>> x = T.dscalar('x')
>>> y = x ** 2
>>> gy = T.grad(y, x)
>>> pp(gy)  # print out the gradient prior to optimization
'((fill((x ** 2), 1.0) * 2) * (x ** (2 - 1)))'
>>> f = function([x], gy)
>>> f(4)
array(8.0)
>>> f(94.2)
array(188.400000000000001)
```

The second argument of `grad()` can be a list (partial derivatives)
Loop: scan

- reduce and map are special cases of scan
 - scan a function along some input sequence, producing an output at each time-step.
 - Number of iterations is part of the symbolic graph
 - Slightly faster than using a for loop with a compiled Theano function
Loop: scan

- Example-1

```python
import theano
import theano.tensor as T
import numpy as np

# define shared variables
k = theano.shared(0)
n_sym = T.iscalar("n_sym")

results, updates = theano.scan(lambda: {k: (k + 1)}, n_steps=n_sym)
accumulator = theano.function([n_sym], [], updates=updates, allow_input_downcast=True)

k.get_value()
accumulator(5)
k.get_value()
```
Loop: scan

- Example-2

```python
import theano
import theano.tensor as T
import numpy as np

# defining the tensor variables
X = T.matrix("X")
W = T.matrix("W")
b_sym = T.vector("b_sym")

results, updates = theano.scan(lambda v: T.tanh(T.dot(v, W) + b_sym), sequences=X)
compute_elementwise = theano.function(inputs=[X, W, b_sym], outputs=[results])

# test values
x = np.eye(2, dtype=theano.config.floatX)
w = np.ones((2, 2), dtype=theano.config.floatX)
b = np.ones((2), dtype=theano.config.floatX)
b[1] = 2

print compute_elementwise(x, w, b)[0]

# comparison with numpy
print np.tanh(x.dot(w) + b)
```
Example-3

• computing the Jacobian matrix
 – Manually, we can use “scan”

```python
>>> x = T.dvector('x')
>>> y = x ** 2
>>> J, updates = theano.scan(lambda i, y, x: T.grad(y[i], x), sequences=T.arange(y.shape[0]), non_sequences=[y, x])
>>> f = function([x], J, updates=updates)
>>> f([4, 4])
array([[ 8.,  0.],
       [ 0.,  8.]])
```
Example-4

- computing the Hessian matrix
 - Manually, we can use “scan”

```python
>>> x = T.dvector('x')
>>> y = x ** 2
>>> cost = y.sum()
>>> gy = T.grad(cost, x)
>>> H, updates = theano.scan(lambda i, gy, x: T.grad(gy[i], x), sequences=T.arange(gy.shape[0]), non_sequences=[gy, x])
>>> f = function([x], H, updates=updates)
>>> f([4, 4])
array([[ 2.,  0.],
       [ 0.,  2.]])
```
Logistic Regression

CASE STUDY - 1
Logistic Regression / Softmax

- Binary classification

- Discriminative function
 \[p(y = 1|x) = \frac{1}{1 + \exp(-w \cdot x - b)} \]

- Objective function
 - Cross-entropy
 \[J = -y \cdot \log p - (1 - y) \log (1 - p) \]
Logistic Regression

```python
import numpy
import theano
import theano.tensor as T
rng = numpy.random

N = 400  # number of samples
feats = 784  # dimensionality of features
D = (rng.randn(N, feats), rng.randint(size=N, low=0, high=2))

training_steps = 10000
```

\[x \quad y \]

\[\text{training_steps} = 10000 \]
Logistic Regression

declare Theano symbolic variables
x = T.matrix("x")
y = T.vector("y")
w = theano.shared(rng.randn(784), name="w")
b = theano.shared(0., name="b")

print "Initial model:"
print w.get_value(), b.get_value()
Logistic Regression

declare Theano symbolic variables
x = T.matrix(“x”)
y = T.vector(“y”)
w = theano.shared(rng.randn(100), name=“w”)
b = theano.shared(0., name=“b”)

Construct Theano expression graph
p_1 = 1 / (1 + T.exp(-T.dot(x, w)-b)) # probability that target = 1
prediction = p_1 > 0.5 # the prediction threshold
xent = -y*T.log(p_1) - (1-y)*T.log(1-p_1) # cross-entropy loss func
cost = xent.mean() + 0.01 * (w**2).sum() # the cost to minimize
gw, gb = T.grad(cost, [w, b])
Logistic Regression

```python
x = T.matrix("x")
y = T.vector("y")
w = theano.shared(rng.randn(100), name="w")
b = theano.shared(0., name="b")
p_1 = 1 / (1 + T.exp(-T.dot(x, w) - b))
prediction = p_1 > 0.5
xent = -y*T.log(p_1) - (1-y)*T.log(1-p_1)
cost = xent.mean() + 0.01 * (w**2).sum()
gw, gb = T.grad(cost, [w, b])

# Compile
train = theano.function(  
    inputs = [x, y],  
    outputs = [prediction, xent]  
    updates = {w : w-0.1*gw, b : b-0.1*gb})
predict = theano.function(inputs = [x], outputs = prediction)
```
Logistic Regression

Train
for i in range(training_steps):
 pred, err = train(D[0], D[1])

print “Final model:”
print w.get_value(), b.get_value()
print “target values for D: ”, D[1]
print “predictions on D: ”, predict(D[0])
CASE STUDY - 2
Multi-Layer Perceptron

• Hidden layer(s)

• Discriminative function
 – \(p(y = 1|x) = f(w_2 \cdot (g(w_1 \cdot x + b_1) + b_2) \)
 – \(f \) and \(g \) can be sigmoid/tanh functions

• Objective function
 – Cross-entropy
 • \(J = -y \cdot \log p - (1 - y)\log(1 - p) \)
import numpy
import theano
import theano.tensor as T
rng = numpy.random

N = 400 # number of samples
feats = 784 # dimensionality of features
D = (rng.randn(N, feats), rng.randint(size=N, low=0, high=2))

training_steps = 10000

Multi-Layer Perceptron
declare Theano symbolic variables
x = T.matrix("x")
y = T.vector("y")
w_1 = theano.shared(rng.randn(784,300), name="w1")
b_1 = theano.shared(numpy.zeros((300,)), name="b1")
w_2 = theano.shared(rng.randn(300), name="w2")
b_2 = theano.shared(0., name="b2")

print "Initial model:"
print w_1.get_value(), b_1.get_value()
p
print w_2.get_value(), b_2.get_value()
declare Theano symbolic variables
w_1 = theano.shared(rng.randn(784,300), name="w1")
b_1 = theano.shared(numpy.zeros((300,)), name="b1")
w_2 = theano.shared(rng.randn(300), name="w2")
b_2 = theano.shared(0., name="b2")

Construct Theano expression graph
p_1 = T.sigmoid(-T.dot(T.sigmoid(-T.dot(x, w_1)-b_1), w_2)-b_2)
probability that target = 1
prediction = p_1 > 0.5 # the prediction threshold
xent = -y*T.log(p_1) - (1-y)*T.log(1-p_1) # cross-entropy loss func
cost = xent.mean() + 0.01 * (w**2).sum() # the cost to minimize
gw_1, gb_1, gw_2, gb_2 = T.grad(cost, [w_1, b_1, w_2, b_2])
Multi-Layer Perceptron

\[
w_1 = \text{theano.shared}(\text{rng.randn}(784,300), \text{name=\text{``w1\text{''}}})
\]
\[
b_1 = \text{theano.shared}(\text{numpy.zeros((300,)}), \text{name=\text{``b1\text{''}}})
\]
\[
w_2 = \text{theano.shared}(\text{rng.randn}(300), \text{name=\text{``w2\text{''}}})
\]
\[
b_2 = \text{theano.shared}(0., \text{name=\text{``b2\text{''}}})
\]
\[
p_1 = \text{T.sigmoid}(\text{T.dot}(\text{T.sigmoid}(\text{-T.dot}(x, w_1)-b_1), w_2)-b_2)
\]
\[
prediction = p_1 > 0.5
\]
\[
xent = -y*\text{T.log}(p_1) - (1-y)*\text{T.log}(1-p_1)
\]
\[
cost = \text{xent.mean()} + 0.01 \times (\text{w**2}).\text{sum()}
\]
\[
gw_1, gb_1, gw_2, gb_2 = \text{T.grad}(\text{cost, [w_1, b_1, w_2, b_2]})
\]

Compile

\[
\text{train = theano.function(}
 \text{inputs = [x, y],}
 \text{outputs = [prediction, xent]}
 \text{updates = {w_1 : w_1-0.1*gw_1, b_1 : b_1-0.1*gb_1,}
 \text{w_2 : w_2-0.1*gw_2, b_2 : b_2-0.1*gb_2}})
\]
\[
\text{predict = theano.function(inputs = [x], outputs = prediction)}
\]
Multi-Layer Perceptron

Train
for i in range(training_steps):
 pred, err = train(D[0], D[1])

print "Final model:"
print w_1.get_value(), b_1.get_value()
print w_2.get_value(), b_2.get_value()
print "target values for D: ", D[1]
print "predictions on D: ", predict(D[0])
Recurrent Neural Network

CASE STUDY - 3
Recurrent Neural Network

• Exercise
 – Use *scan* to implement the loop operation
COMPARISON WITH OTHER TOOLKITS
Theano vs. Torch7

<table>
<thead>
<tr>
<th>Features</th>
<th>Lua/Torch7</th>
<th>Python/Theano</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scripting language</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Fast execution speed</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Optimized BLAS, LAPACK</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Plotting Environment</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>GPU</td>
<td>✔️ float only</td>
<td>✔️ float only</td>
</tr>
<tr>
<td>Easy call to C functions</td>
<td>✔️ Natively with Lua</td>
<td>✔️ via Cython(^a), ctypes, etc.</td>
</tr>
<tr>
<td>OS</td>
<td>Linux, MacOS X, FreeBSD</td>
<td>Linux, MacOS X, Windows</td>
</tr>
<tr>
<td>Public development</td>
<td>✔️ on GitHub(^b)</td>
<td>✔️ on GitHub(^c)</td>
</tr>
<tr>
<td>Unit tests</td>
<td>✔️</td>
<td>✔️</td>
</tr>
<tr>
<td>Used in published research</td>
<td>✔️</td>
<td>✔️ Buildbot(^d), Travis-Cl(^e)</td>
</tr>
<tr>
<td>Used at companies</td>
<td>NEC</td>
<td>Google, Yahoo!, Card.io, startups</td>
</tr>
<tr>
<td>Sparse matrices</td>
<td>✗</td>
<td>✔️</td>
</tr>
<tr>
<td>Symbolic differentiation</td>
<td>Non-symbolic NN gradient</td>
<td>✔️ Scan</td>
</tr>
<tr>
<td>Differentiation over loop</td>
<td>✗</td>
<td>✔️ For most operations</td>
</tr>
<tr>
<td>R-operator</td>
<td>✗</td>
<td>✔️</td>
</tr>
<tr>
<td>Automatic graph optimization</td>
<td>✗</td>
<td>✔️</td>
</tr>
<tr>
<td>Parallel functions</td>
<td>✔️ OpenMP widely used</td>
<td>Only in BLAS and Conv2D</td>
</tr>
<tr>
<td>Embeddable in a C app.</td>
<td>✔️</td>
<td>✗</td>
</tr>
<tr>
<td>Informative error messages</td>
<td>✔️</td>
<td>Not always</td>
</tr>
</tbody>
</table>
(a) Logistic regression

(b) Neural network, 1 hidden layer with 500 units

(c) Deep neural network, 3 hidden layers with 1000 units each
Thank you!