
BackPropagation Through Time

Jiang Guo

2013.7.20

Abstract

This report provides detailed description and necessary derivations for
the BackPropagation Through Time (BPTT) algorithm. BPTT is often
used to learn recurrent neural networks (RNN). Contrary to feed-forward
neural networks, the RNN is characterized by the ability of encoding
longer past information, thus very suitable for sequential models. The
BPTT extends the ordinary BP algorithm to suit the recurrent neural
architecture.

1 Basic Definitions

For a two-layer feed-forward neural network, we notate the input layer as x
indexed by variable i, the hidden layer as s indexed by variable j, and the
output layer as y indexed by variable k. The weight matrix that map the input
vector to the hidden layer is V, while the hidden layer is propagated through the
weight matrix W, to the output layer. In a simple recurrent neural network,
we attach every neural layer a time subscript t. The input layer consists of
two components, x(t) and the privious activation of the hidden layer s(t − 1)
indexed by variable h. The corresponding weight matrix is U.

Table 1 lists all the notations used in this report:

Neural layer Description Index variable
x(t) input layer i
s(t− 1) previous hidden (state) layer h
s(t) hidden (state) layer j
y(t) output layer k

Weight matrix Description Index variables
V Input layer → Hidden layer i, j
U Previous hidden layer → Hidden layer h, j
W Hidden layer → Output layer j, k

Table 1: Notations in the recurrent neural network.

Then, the recurrent neural network can be processed as the following:

• Input layer → Hidden layer

sj(t) = f(netj(t)) (1)

1



x(t)

s(t-1)

y(t)

V

U

W

s(t)

Figure 1: A simple recurrent neural network.

netj(t) =

l∑
i

xi(t)vji +

m∑
h

sh(t− 1)ujh + bj (2)

• Hidden layer → Output layer

yk(t) = g(netk(t)) (3)

netk(t) =

m∑
j

sj(t)wkj + bk (4)

Where f and g are the activate functions in the hidden layer and output layer
respectively. The activate function holds the non-linearities of the entire neural
network, which greatly improves its expression power. bj and bk are the biases.

The architecture of a recurrent neural network is shown in Figure 1. What
we need to learn is the three weight matrices U, V,W , as well as the two biases
bj and bk.

2 BackPropagation

2.1 Error Propagation

Any feed-forward neural networks can be trained with backpropagation (BP)
algorithm, as long as the cost function are defferentiable. The most frequently
used cost function is the summed squared error (SSE), defined as:

C =
1

2

n∑
p

o∑
k

(dpk − ypk)2 (5)

where d is the desired output, n is the total number of training samples and o
is the number of output units.

2



BP is actually a propagated gradient descent algorithm, where gradients are
propagated backward, leading to very efficient computing of the higher layer
weight change. According to the gradient descent, each weight change in the
network should be proportional to the negative gradient of the cost function,
with respect to the specific weight:

∆(w) = −η ∂(C)

∂(w)
(6)

Form of the cost function can be very complicated due to the hierarchical
structure of the neural network. Hence the partial gradient for higher layer
weights is intuitively not easy to calculate. Here we will show how to efficiently
obtain the gradients for weights in every layer, by using the chain rule.

Note that the complexity mainly comes from the non-linearity of the activate
function, so we would like to firstly seperate the linear and the non-linear parts
in the gradient associated with each neural unit.

∆(w) = −η ∂(C)

∂(net)

∂(net)

∂(w)
(7)

where net represents the linear combination of the inputs, and thus ∂(net)
∂(w) is

easy to compute1. What we mainly need to care about is ∂(C)
∂(net) . We notate

δ = − ∂(C)
∂(net) , as the error (vector) for each node.

For output nodes:

δpk = − ∂(C)

∂(ypk)

∂(ypk)

∂(netpk)
= (dpk − ypk)g

′
(netpk) (8)

For hidden nodes:

δpj = −(

o∑
k

∂(C)

∂(ypk)

∂(ypk)

∂(netpk)

∂(netpk)

∂(spj)
)
∂(spj)

∂(netpj)
=

o∑
k

δpkwkjf
′
(netpj) (9)

We could see that all output units contribute to the error of each hidden
unit. Therefore it is simply a weighted sum operation to propagate the errors
backward.

The weight change can then be simply computed by:

∆wkj = η

n∑
p

δpkspj (10)

for hidden → output weights W , and

∆vji = η

n∑
p

δpjxpi (11)

for input → hidden weights V . The recurrent weights2 change is:

1exactly the input (vector) of that neuron, in other words, it is the activations of the
previous layer.

2we notate the weights from the previous hidden layer U to hidden layer as recurrent
weights.

3



∆uji = η

n∑
p

δpjsph(t− 1) (12)

2.2 Activate function and cost function

The sigmoid function (also known as logistic function) is often used as the
activate funciton, due to its elegant form of derivative.

y = g(net) =
1

1 + e−net
(13)

g
′
(net) = y(1− y) (14)

In fact, for any probability function from the exponential family of proba-
bility distributions (such as softmax):

g(netk) =
enetk∑
q e

netq
(15)

Equation 14 holds.
Of course this is not the exclusive reason that makes sigmoid function so

attactive. It for sure has some other good properties. But to my knowledge,
this is the most facinating one.

The cost function can be any differentiable function that is able to measure
the loss of the predicted values from the gold answers. The SSE loss mentioned
before is frequently-used, and works well in the training of conventional feed-
forward neural networks.

For recurrent neural works, another appropriate cost function is the so-called
cross-entropy:

C = −
n∑
p

o∑
k

dpk ln ypk + (1− dpk) ln(1− ypk) (16)

The cross-entropy loss is used in Recurrent Neural Network Language Models
(RNNLM) and performs well [2]. With sigmoid or softmax as the activate
funciton, the cross-entropy loss holds good properties:

δpk = − ∂(C)

∂(ypk)

∂(ypk)

∂(netpk)
= dpk − ypk (17)

Consequently, the weight change of W can be written as:

∆wkj = η

n∑
p

δpkspj = η

n∑
p

(dpk − ypk)spj (18)

The error (vector) is then propagated backward recursively, as illustrated
in Equation 9. Input weights V and recurrent weights U can then be updated
accordingly.

4



x(t)

s(t-1)

y(t)

V

U

W

s(t)
x(t-1)

s(t-2)

x(t-2)

s(t-3)

V

U

U

V

Figure 2: An unfolded recurrent neural network.

3 BackPropagation Through Time

In a recurrent neural network, errors can be propagated further, i.e. more than
2 layers, in order to capture longer history information. This process is usually
called unfolding. An unfolded RNN is shown in Figure 2.

In an unfolded RNN, the recurrent weight is duplicated spatially for an arbi-
trary number of time steps, here refered to as τ . In accordance with Equation 9,
errors are thus propagated backward as:

δpj(t− 1) =

m∑
h

δph(t)uhjf
′
(spj(t− 1)) (19)

where h is the index for the hidden node at time step t, and j for the hidden
node at time step t − 1. The error deltas of higher layer weights can then be
calculated recursively.

After all error deltas have been obtained, weights are folded back adding up
to one big change for each unfolded weights.

3.1 Matrix-vector notations

For concision, here we do not take the index of training samples p into our
notations. Then the error deltas of the output layer are represented by:

eo(t) = d(t)− y(t) (20)

The output weight matrix W are updated as:

W(t+ 1) = W(t) + ηs(t)eo(t)T (21)

5



Next, gradients of the errors are propagated from the output layer to the hidden
layer:

eh(t) = dh(eo(t)TV, t) (22)

where the error vector is obtained using function dh(·) that is applied element-
wise:

dhj(x, t) = xf
′
(netj) (23)

Weights V between the input layer and hidden layer are then updated as

V(t+ 1) = V(t) + ηx(t)eh(t)T (24)

The recurrent weight W are updated as

U(t+ 1) = U(t) + ηs(t− 1)eh(t)T (25)

Above demonstrates the matrix-vector notations of conventional BP algorithm
for recurrent neural networks. For BPTT training, error propagation is done
recursively:

eh(t− τ − 1) = dh(eh(t− τ)U, t− τ − 1) (26)

then the weight matrices V and U are updated as:

V(t+ 1) = V(t) + η

T∑
z=0

x(t− z)eh(t− z)T (27)

U(t+ 1) = U(t) + η

T∑
z=0

s(t− z − 1)eh(t− z)T (28)

4 Discussion

The unfolded recurrent neural network can be seen as a deep neural network,
except that the recurrent weights are tied. Consequently, in BPTT training, the
weight changes at each recurrent layer should be added up to one big change,
in order to keep the recurrent weights consistent. A similar algorithm is the
so-called BackPropagation Through Time (BPTS) algorithm, which is used for
training recursive neural networks [1]. Actually, in specific tasks, the recurren-
t/recursive weights can also be untied. In that case, much more parameters are
to be learned.

References

[1] C. Goller and A. Kuchler. Learning task-dependent distributed represen-
tations by backpropagation through structure. In Neural Networks, 1996.,
IEEE International Conference on, volume 1, pages 347–352. IEEE, 1996.

[2] T. Mikolov, M. Karafiát, L. Burget, J. Cernockỳ, and S. Khudanpur. Re-
current neural network based language model. In INTERSPEECH, pages
1045–1048, 2010.

6


