Human-level control through deep reinforcement learning

Jiang Guo

2016.04.19

Towards General Artificial Intelligence

- Playing Atari with Deep Reinforcement Learning. ArXiv (2013)
 - 7 Atari games
 - The first step towards "General Artificial Intelligence"
- DeepMind got acquired by @Google (2014)
- Human-level control through deep reinforcement learning. *Nature* (2015)
 - 49 Atari games
 - Google patented "Deep Reinforcement Learning"

Key Concepts

- Reinforcement Learning
- Markov Decision Process
- Discounted Future Reward
- Q-Learning
- Deep Q Network
- Exploration-Exploitation
- Experience Replay
- Deep Q-learning Algorithm

Reinforcement Learning

• Example: breakout (one of the Atari games)

- Suppose you want to teach an agent (e.g. NN) to play this game
 - Supervised training (expert players play a million times)

 That's not how we learn!
 - Reinforcement learning

Reinforcement Learning

ML Supervised Learning
Reinforcement Learning
Unsupervised Learning

Target label for each training example

Sparse and time-delayed labels

No label at all

Pong Breakout Space Invaders Seaquest Beam Rider

RL is Learning from Interaction

RL is like Life!

Markov Decision Process

State Representation

Think about the **Breakout** game

How to define a state?

- Location of the paddle
- Location/direction of the ball
- Presence/absence of each individual brick

Let's make it more universal!

Screen pixels

Value Function

 $s_0, a_0, r_1, s_1, a_1, r_2, \dots, s_{n-1}, a_{n-1}, r_n, s_n$

Future reward

$$R = r_1 + r_2 + r_3 + \dots + r_n$$

$$R_t = r_t + r_{t+1} + r_{t+2} + \dots + r_n$$

Discounted future reward (environment is stochastic)

$$R_{t} = r_{t} + \gamma r_{t+1} + \gamma^{2} r_{t+2} + \dots + \gamma^{n-t} r_{n}$$

$$= r_{t} + \gamma (r_{t+1} + \gamma (r_{t+2} + \dots))$$

$$= r_{t} + \gamma R_{t+1}$$

 A good strategy for an agent would be to always choose an action that maximizes the (discounted) future reward

Value-Action Function

• We define a Q(s,a) representing the maximum discounted future reward when we perform action \underline{a} in state \underline{s} :

$$Q(s_t, a_t) = \max R_{t+1}$$

- Q-function: represents the "Quality" of a certain action in a given state
- Imagine you have the magical Q-function

$$\pi(s) = \underset{a}{arg}\max Q(s, a)$$

• π is the policy

Q-Learning

- How do we get the Q-function?
 - Bellman Equation (贝尔曼公式)

$$Q(s,a) = r + \gamma max_{a'}Q(s',a')$$

```
initialize Q[num\_states, num\_actions] arbitrarily observe initial state s

repeat

select and carry out an action a
observe reward r and new state s'
Q[s,a] = Q[s,a] + \alpha(r + \gamma \max_{a'} Q[s',a'] - Q[s,a])
s = s'
until terminated
```

Value Iteration

Q-Learning

- In practice, Value Iteration is impractical
 - Very limited states/actions
 - Cannot generalize to unobserved states

- Think about the Breakout game
 - State: screen pixels
 - Image size: 84 × 84 (resized)
 - Consecutive 4 images
 - Grayscale with **256** gray levels

Function Approximator

Use a function (with parameters) to approximate the Q-function

$$Q(s,a;\theta) \approx Q^*(s,a)$$

- Linear
- Non-linear: Q-network

Deep Q-Network

Deep Q-Network used in the DeepMind paper:

Layer	Input	Filter size	Stride	Num filters	Activation	Output
conv1	84x84x4	8x8	4	32	ReLU	20x20x32
conv2	20x20x32	4x4	2	64	ReLU	9x9x64
conv3	9x9x64	3x3	1	64	ReLU	7x7x64
fc4	7x7x64			512	ReLU	512
fc5	512			18	Linear	18

Note: No Pooling Layer!

Estimating the Q-Network

- Objective Function
 - Recall the Bellman Equation: $Q(s,a) = r + \gamma max_{a'}Q(s',a')$
 - Here, we use simple squared error:

$$L = \mathbb{E}[(\mathbf{r} + \gamma \mathbf{max}_{\mathbf{a}'} \mathbf{Q}(\mathbf{s}', \mathbf{a}') - Q(\mathbf{s}, \mathbf{a}))^{2}]$$
target

Leading to the following Q-learning gradient

$$\frac{\partial L(w)}{\partial w} = \mathbb{E}[(\mathbf{r} + \gamma \mathbf{m} a \mathbf{x}_{a'} \mathbf{Q}(\mathbf{s}', a') - Q(\mathbf{s}, a)) \frac{\partial Q(\mathbf{s}, a, w)}{\partial w}]$$

Optimize objective end-to-end by SGD

Learning Stability

• Non-linear function approximator (Q-Network) is not very stable

Deep Learning

Reinforcement Learning

Data samples are I.I.D.

VS.

States are highly correlated

Data distribution changes

- 1. Exploration-Exploitation
- 2. Experience Replay

Underlying data distribution is fixed

Exploration-Exploitation Dilemma (探索-利用 困境)

- During training, how do we choose an action at time t?
 - (探索) Exploration: random guessing
 - (利用) Exploitation: choose the best one according to the Q-value
- ϵ -greedy policy
 - With probability ϵ select a random action (Exploration)
 - Otherwise select $a = argmax_{a'}Q(s, a')$ (Exploitation)

Experience Replay

- To remove correlations, build data-set from agent's own experience
 - 1. Take action a_t according to ϵ -greedy policy
 - 2. During gameplay, store transition $\langle s_t, a_t, r_{t+1}, s_{t+1} \rangle$ in replay memory D
 - 3. Sample random mini-batch of transitions $\langle s, a, r, s' \rangle$ from D
 - 4. Optimize MSE between Q-network and Q-learning targets

$$L = \mathbb{E}_{s,a,r,s' \sim D} \frac{1}{2} [r + \gamma \max_{a'} Q(s',a') - Q(s,a)]^2$$

Algorithm 1: deep Q-learning with experience replay.

Initialize replay memory D to capacity N

Initialize action-value function Q with random weights θ

Initialize target action-value function \hat{Q} with weights $\theta^- = \theta$

For episode = 1, M do

Initialize sequence $s_1 = \{x_1\}$ and preprocessed sequence $\phi_1 = \phi(s_1)$

For t = 1,T do

 ϵ -greedy policy

With probability ε select a random action a_t otherwise select $a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)$

Execute action a_t in emulator and observe reward r_t and image x_{t+1}

Set $s_{t+1} = s_t, a_t, x_{t+1}$ and preprocess $\phi_{t+1} = \phi(s_{t+1})$

Experience memory

Store transition $(\phi_t, a_t, r_t, \phi_{t+1})$ in D

Sample random minibatch of transitions $(\phi_j, a_j, r_j, \phi_{j+1})$ from D

Set $y_j = \begin{cases} r_j & \text{if episode terminates at step } j+1 \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^-) & \text{otherwise} \end{cases}$

Perform a gradient descent step on $(y_j - Q(\phi_j, a_j; \theta))^2$ with respect to the network parameters θ

Target network

Every C steps reset $\hat{Q} = Q$

End For

End For

Effect of Experience Replay and Target Q-Network

Extended Data Table 3 | The effects of replay and separating the target Q-network

Game	With replay, with target Q	With replay, without target Q	Without replay, with target Q	Without replay, without target Q
Breakout	316.8	240.7	10.2	3.2
Enduro	1006.3	831.4	141.9	29.1
River Raid	7446.6	4102.8	2867.7	1453.0
Seaquest	2894.4	822.6	1003.0	275.8
Space Invaders	1088.9	826.3	373.2	302.0

A short review

- Reinforcement Learning
 - Function approximators for end-to-end Q-learning
- Deep Learning
 - Extract high-level feature representations from high-dimensional raw sensory data

Reinforcement Learning + Deep Learning = Al

<u>by David Silver</u>