
Human-level control through deep
reinforcement learning

Jiang Guo

2016.04.19

Towards General Artificial Intelligence

• Playing Atari with Deep Reinforcement Learning. ArXiv (2013)
• 7 Atari games
• The first step towards “General Artificial Intelligence”

• DeepMind got acquired by @Google (2014)

• Human-level control through deep reinforcement learning. Nature
(2015)
• 49 Atari games
• Google patented “Deep Reinforcement Learning”

Key Concepts

• Reinforcement Learning

• Markov Decision Process

• Discounted Future Reward

• Q-Learning

• Deep Q Network

• Exploration-Exploitation

• Experience Replay

• Deep Q-learning Algorithm

Reinforcement Learning

• Example: breakout (one of the Atari games)

• Suppose you want to teach an agent (e.g. NN) to play this game
• Supervised training (expert players play a million times)

• Reinforcement learning

That’s not how we learn!

Reinforcement Learning

Supervised Learning

Reinforcement Learning

Unsupervised Learning

ML

Target label for each training example

No label at all

Sparse and time-delayed labels

Pong Breakout Space Invaders Seaquest Beam Rider

RL is Learning from Interaction

RL is like Life!

Markov Decision Process

𝑠0, 𝑎0, 𝑟1, 𝑠1, 𝑎1, 𝑟2, … , 𝑠𝑛−1, 𝑎𝑛−1, 𝑟𝑛, 𝑠𝑛

state

action

reward

Terminal state

State Representation

Think about the Breakout game
• How to define a state?

Let’s make it more universal!

• Location of the paddle
• Location/direction of the ball
• Presence/absence of each individual brick

Screen pixels

Value Function

• Future reward

• Discounted future reward (environment is stochastic)

• A good strategy for an agent would be to always choose an action that maximizes
the (discounted) future reward

𝑠0, 𝑎0, 𝑟1, 𝑠1, 𝑎1, 𝑟2, … , 𝑠𝑛−1, 𝑎𝑛−1, 𝑟𝑛, 𝑠𝑛

𝑅 = 𝑟1 + 𝑟2 + 𝑟3 +⋯+ 𝑟𝑛

𝑅𝑡 = 𝑟𝑡 + 𝑟𝑡+1 + 𝑟𝑡+2 +⋯+ 𝑟𝑛

𝑅𝑡 = 𝑟𝑡 + 𝛾𝑟𝑡+1 + 𝛾2𝑟𝑡+2 +⋯+ 𝛾𝑛−𝑡𝑟𝑛
= 𝑟𝑡 + 𝛾(𝑟𝑡+1 + 𝛾(𝑟𝑡+2 +⋯))
= 𝑟𝑡 + 𝛾𝑅𝑡+1

MDP

Value-Action Function

• We define a 𝑄(𝑠, 𝑎) representing the maximum discounted future
reward when we perform action a in state s:

• Q-function: represents the “Quality” of a certain action in a given state

• Imagine you have the magical Q-function

• 𝜋 is the policy

𝑄 𝑠𝑡 , 𝑎𝑡 = max𝑅𝑡+1

𝜋 𝑠 = 𝑎𝑟𝑔max
𝑎

𝑄(𝑠, 𝑎)

Q-Learning

• How do we get the Q-function?
• Bellman Equation （贝尔曼公式）

𝑄 𝑠, 𝑎 = 𝑟 + 𝛾𝑚𝑎𝑥𝑎′𝑄(𝑠
′, 𝑎′)

Value Iteration

Q-Learning

• In practice, Value Iteration is impractical
• Very limited states/actions

• Cannot generalize to unobserved states

• Think about the Breakout game
• State: screen pixels

• Image size: 𝟖𝟒 × 𝟖𝟒 (resized)

• Consecutive 4 images

• Grayscale with 256 gray levels

𝟐𝟓𝟔𝟖𝟒×𝟖𝟒×𝟒 rows in the Q-table!

Function Approximator

• Use a function (with parameters) to approximate the Q-function

• Linear

• Non-linear: Q-network

𝑄 𝑠, 𝑎; 𝜽 ≈ 𝑄∗(𝑠, 𝑎)

State

Action

Network Q-value

𝑠

𝑎

State Network Q-value 2𝑠

Q-value 1

Q-value 3

Deep Q-Network

Deep Q-Network used in the DeepMind paper:

Note: No Pooling Layer!

Estimating the Q-Network

• Objective Function
• Recall the Bellman Equation:

• Here, we use simple squared error:

• Leading to the following Q-learning gradient

• Optimize objective end-to-end by SGD

𝑄 𝑠, 𝑎 = 𝑟 + 𝛾𝑚𝑎𝑥𝑎′𝑄(𝑠
′, 𝑎′)

𝐿 = 𝔼[(𝒓 + 𝜸𝒎𝒂𝒙𝒂′𝑸 𝒔′, 𝒂′ − 𝑄 𝑠, 𝑎)2]

target

𝜕𝐿 𝑤

𝜕𝑤
= 𝔼[(𝒓 + 𝜸𝒎𝒂𝒙𝒂′𝑸 𝒔′, 𝒂′ − 𝑄 𝑠, 𝑎)

𝜕𝑄(𝑠, 𝑎, 𝑤)

𝜕𝑤
]

Learning Stability

• Non-linear function approximator (Q-Network) is not very stable

Data samples are I.I.D. States are highly correlated

Underlying data
distribution is fixed

Data distribution changes

Deep Learning Reinforcement Learning

vs.
1. Exploration-Exploitation

2. Experience Replay

Exploration-Exploitation Dilemma
(探索-利用困境)

• During training, how do we choose an action at time 𝑡?

• （探索）Exploration: random guessing

• （利用）Exploitation: choose the best one according to the Q-value

• 𝜖-greedy policy
• With probability 𝜖 select a random action (Exploration)

• Otherwise select 𝑎 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎′𝑄 𝑠, 𝑎′ (Exploitation)

Experience Replay

• To remove correlations, build data-set from agent’s own experience

1. Take action 𝑎𝑡 according to 𝝐-greedy policy

2. During gameplay, store transition < 𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1 > in replay memory 𝐷

3. Sample random mini-batch of transitions < 𝑠, 𝑎, 𝑟, 𝑠′ > from 𝐷

4. Optimize MSE between Q-network and Q-learning targets

𝐿 = 𝔼𝑠,𝑎,𝑟,𝑠′~𝐷
1

2
[𝒓 + 𝜸𝒎𝒂𝒙𝒂′𝑸 𝒔′, 𝒂′ − 𝑄 𝑠, 𝑎]2

𝝐-greedy policy

Experience memory

Target network

Effect of Experience Replay and Target Q-Network

A short review

• Reinforcement Learning
• Function approximators for end-to-end Q-learning

• Deep Learning
• Extract high-level feature representations from high-dimensional raw sensory

data

Reinforcement Learning + Deep Learning = AI
by David Silver

