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Towards General Artificial Intelligence

* Playing Atari with Deep Reinforcement Learning. ArXiv (2013)
e 7 Atari games
* The first step towards “General Artificial Intelligence”

* DeepMind got acquired by @Google (2014)

 Human-level control through deep reinforcement learning. Nature
(2015)

* 49 Atari games
* Google patented “Deep Reinforcement Learning”



Key Concepts

* Reinforcement Learning

* Markov Decision Process

* Discounted Future Reward
* Q-Learning

* Deep Q Network

* Exploration-Exploitation

* Experience Replay

* Deep Q-learning Algorithm



Reinforcement Learning

* Example: breakout (one of the Atari games)

e Suppose you want to teach an agent (e.g. NN) to play this game
e Supervised training (expert players play a million times)  That’s not how we learn!
* Reinforcement learning



Reinforcement Learning

Supervised Learning Target label for each training example

Reinforcement Learning Sparse and time-delayed labels

Unsupervised Learning No label at all

Pong Breakout Space Invaders Seaquest Beam Rider



RL is Learning from Interaction

Environment

RL is like Life!



Markov Decision Process
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State Representation

Think about the Breakout game
e How to define a state?

* Location of the paddle
* Location/direction of the ball
* Presence/absence of each individual brick N

Let’s make it more universal!

Screen pixels




MDP

Value Function

e Future reward
R=nr+nrnt+r+--+rn

Rt — Tt + Tt+1 + Tt+2 + -+ Tn
e Discounted future reward (environment is stochastic)

Re= 1o+ Yty + Vit + -+ 7" iny,
=1+ V(41 V(P42 + 7))
=1 + YRt

* A good strategy for an agent would be to always choose an action that maximizes
the (discounted) future reward



Value-Action Function

* We define a Q(s, a) representing the maximum discounted future
reward when we perform action a in state s:

Q(s¢ ap) = max Ryiq

* Q-function: represents the “Quality” of a certain action in a given state
* Imagine you have the magical Q-function
n(s) = argmax Q(s,a)
a

* 1T is the policy



Q-Learning

* How do we get the Q-function?
* Bellman Equation (J1/RE/AT()

Q(s,a) =r +ymax,Q(s',a")

initialize Q[num states,num actions] arbitrarily
observe initial state s

repeat
select and carry out an action a
observe reward r and new state s’
Qls,al = Qls,a] + alr + y max,» Q[s',a'’'] - Qls,al)
g = g’
until terminated

Value Iteration



Q-Learning

* In practice, Value Iteration is impractical
* Very limited states/actions
* Cannot generalize to unobserved states

* Think about the Breakout game

» State: screen pixels

* Image size: 84 X 84 (resized)
 Consecutive 4 images 25684844 rows in the Q-table!
* Grayscale with 256 gray levels



Function Approximator
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e Use a function (with parameters) to approximate the Q-function

Q(s,a;0) = Q*(s,a)

 Linear

* Non-linear: Q-network
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Deep Q-Network

Deep Q-Network used in the DeepMind paper:
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Layer Input Filter size | Stride Num filters | Activation | Output
convi 84x84x4 8x8 4 32 RelLU 20x20x32
conv2 20x20x32 | 4x4 2 64 RelLU 9x9x64
conv3 9x9x64 3x3 1 64 RelLU 7X7x64
fca 7X7x64 512 RelLU 512

fcb 512 18 Linear 18

Note: No Pooling Layer!




Estimating the Q-Network

* Objective Function
+ Recall the Bellman Equation: Q(s,a) =r +ymax_Q(s',a’)

* Here, we use simple squared error:

L = E[(r + ymax, Q(s',a’) — Q(s,a))?]

e

target

* Leading to the following Q-learning gradient

oL(w) d0Q(s,a,w)

——— = E[(r + ymax,Q(s',a") = Q(s, @) —5——]

* Optimize objective end-to-end by SGD




Learning Stability

* Non-linear function approximator (Q-Network) is not very stable

Deep Learning Reinforcement Learning

Data samples are I|.I.D States are highly correlated
» 1. Exploration-Exploitation

2. Experience Replay

VS.
Underlying data

distribution is fixed Data distribution changes




Exploration-Exploitation Dilemma
(IRR-FIH HiR)

* During training, how do we choose an action at time t?

o (#RZ) Exploration: random guessing
« (FJH) Exploitation: choose the best one according to the Q-value

* e-greedy policy
* With probability € select a random action  (Exploration)
* Otherwise select a = argmaxQ(s,a’)  (Exploitation)



Experience Replay

* To remove correlations, build data-set from agent’s own experience

B w N e

Take action a; according to e-greedy policy

During gameplay, store transition < s¢, a;, 1141, S¢+1 > in replay memory D
Sample random mini-batch of transitions < s,a,r,s’ > from D

Optimize MSE between Q-network and Q-learning targets

1
L = ]Es,a,T,s’ND E [ + ymaxa'Q(S,r a') —Q(s, a)]z



Algorithm 1: deep Q-learning with experience replay.
[nitialize replay memory D to capacity N
[nitialize action-value function Q with random weights 0
Initialize target action-value function Q with weights 6~ = 6
For episode = 1, M do
Initialize sequence s; = {x; } and preprocessed sequence ¢, =¢(s;)
Fort=1,T do
e-greedy policy ‘ With probability ¢ select a random action a;,
otherwise select a, =argmax, Q(¢(s;),a; 0)
Execute action a; in emulator and observe reward r; and image x; 4
Set s;41 =5;,d;,X;+1 and preprocess ¢, ; =P(s;41)
Experience memory ‘ Store transition (¢,,a,r1,¢,,,) in D
Sample random minibatch of transitions (qf)j,aj,r},(,bj n 1) from D

rj if episode terminates at step j+ 1
Sety; = rj+7y maxy é[(ng 1a'; 8_) otherwise
2
Perform a gradient descent step on (yj —§|(¢-,aj; 9) ) with respect to the

network parameters 0

Target network ‘ Every C steps reset Q: 0
End For

End For
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Effect of Experience Replay and Target Q-Network

Extended Data Table 3 | The effects of replay and separating the target Q-network

Game With replay, With replay, Without replay, Without replay,
with target Q without target Q with target Q without target Q
Breakout 316.8 240.7 10.2 3.2
Enduro 1006.3 831.4 141.9 29.1
River Raid 7446.6 4102.8 2867.7 1453.0
Seaquest 2894 .4 822.6 1003.0 275.8

Space Invaders 1088.9 826.3 373.2 302.0



A short review

* Reinforcement Learning
* Function approximators for end-to-end Q-learning

* Deep Learning

* Extract high-level feature representations from high-dimensional raw sensory
data

Reinforcement Learning + Deep Learning = Al

by David Silver




