

A Neural Attention Model for Disfluency Detection

Shaolei Wang, Wanxiang Che, Ting Liu

School of Computer Science and Technology Harbin Institute of Technology, Harbin, China

Disfluency Detection

- □ The transcribed speech text is mostly disfluent
- □ The goal of disfluency detection is to detect the disfluecny in speech text

Disfluency Types

- Disfluencies
 - Filled pause
 - uh, oh, um...
 - Explicit editing term
 - you know, excuse me, sorry...
 - Discourse marker
 - well, so...
 - Uncompleted word
 - Pre-...
 - Reparandum (edited phrase)

Well solved

Our focus

Reparandum Disfluencies

Disfluency Effect on Machine Translation

Challenges of Disfluency Detection

- Vary in length and occur everywhere
- Long-range dependencies
- Keep the generated sentences grammatical

Related Work

- Sequence labeling
 - M³N labeling
 - (Qian et al., NAACL 2013)
 - Beam search decoding
 - (Wang et al., Coling 2014)
 - Semi-markov model
 - (Ferguson et al., NAACL 2015)

Related Work

- □ Joint parsing and disfluency
 - Left-to-right(L2R) parsing-based joint model
 - (Honnibal et al., TACL 2014)
 - Right-to-Left(R2L) parsing-based joint model
 - (Wu et al., ACL 2015)

Related Work

- □ Recurrent neural netwok (RNN)
 - RNN for incremental disfluency detection
 - (Hough and Schlangen, 2015)
 - Bidirectional LSTM
 - (Zayats et al., 2016)

Our Motivations

□ Sequence-to-sequence method

Our Motivations

- □ Sequence-to-sequence method
 - utilize the global representation of the input sentence and may provide a good solution to the long-range dependencies question

Our Motivations

- Sequence-to-sequence method
 - utilize the global representation of the input sentence and may provide a good solution to the long-range dependencies question
 - can be seen as a conditional language model and thus has the ability to keep the generated sentences grammatical

- Seq2Seq based MT model
 - □ Source: "I am a student" -> Target: " 我是个学生"

- Attention-based MT model
 - □ When predicting a target word, it first weighs every location in source sentence and then it calculates a weighted sum

□ Disfluency detection requires that the output sentence should be an ordered subsequence of the input sentence

- □ Disfluency detection requires that the output sentence should be an ordered subsequence of the input sentence
- □ Limitations of the above attention network

- □ Disfluency detection requires that the output sentence should be an ordered subsequence of the input sentence
- □ Limitation of the above attention network
 - may generate a word not appearing in the input sentence

- □ Disfluency detection requires that the output sentence should be an ordered subsequence of the input sentence
- □ Limitation of the above attention network
 - may generate a word not appearing in the input sentence
 - □ can not generate the word not appearing in the fixed output dictionary

- □ Disfluency detection requires that the output sentence should be an ordered subsequence of the input sentence
- □ Limitation of the above attention network
 - may generate a word not appearing in the input sentence
 - can not generate the word not appearing in the fixed output dictionary
 - □ has no ability to model the order of the generated words

Background (Pointer network)

- □ Pointer network(Vinyals et al., NIPS 2015)
 - □ When predicting a target word, it first weighs every location in source sentence and then it select word with maximum weight

Background (Pointer network)

- □ Solved:
 - □ All of the word generated is in the input sentence
 - □ Break the limit of the fixed output vocabulary
- Unsolved
 - □ has no ability to model the order of the generated words

generate "->"

□ Input representation:

$$x = \max\{0, V[\widetilde{w}; w; p; d] + b\}$$

Where

w: a learned word embedding

p: a learned POS-tag embedding

d: a hand-crafted feature representation

 \widetilde{w} : a fixed word embedding

☐ The hand-crafted features:

duplicate features

```
Duplicate(i, w_{i+k}), -15 \leq k \leq +15 \text{ and } k \neq 0 \text{: if } w_i \text{ equals } w_{i+k}, \text{ the value is 1, others 0} \\ Duplicate(p_i, p_{i+k}), -15 \leq k \leq +15 \text{ and } k \neq 0 \text{: if } p_i \text{ equals } p_{i+k}, \text{ the value is 1, others 0} \\ Duplicate(w_i w_{i+1}, w_{i+k} w_{i+k+1}), -4 \leq k \leq +4 \text{ and } k \neq 0 \text{: if } w_i w_{i+1} \text{ equals } w_{i+k} w_{i+k+1}, \\ \text{the value is 1, others 0} \\ Duplicate(p_i p_{i+1}, p_{i+k} p_{i+k+1}), -4 \leq k \leq +4 \text{ and } k \neq 0 \text{: if } p_i p_{i+1} \text{ equals } p_{i+k} p_{i+k+1}, \\ \text{the value is 1, others 0} \\
```

similarity features

```
fuzzyMatch(w_i, w_{i+k}), k \in \{-1, +1\}: similarity = num\_same\_letters/(len(w_i) + len(w_{i+k})). if similarity > 0.8, the value is 1, others 0
```

Model Training

minimize the negative log-probability of the output sequence over the input:

$$-\sum_{i=1}^{N} log(p(y_i|x_i)) = -\sum_{i=1}^{N} log(\prod_{t=1}^{T} p(y_t \mid \{y_1, ..., y_{t-1}\}, c))$$

Experimental Setting

- Dataset
 - English Switchboard corpus
 - □ (Following Charniak and Johnson, 2001)
 - □ Training data: Switchboard sw[23] files
 - □ Dev data: Switchboard sw4[5-9] files
 - □ Test data (only used once): Switchboard sw[0-1] files
 - □ Evaluation metric

$$Prec. = \frac{\#Correctly\ Predicted}{\#Predicted}$$
 $Rec. = \frac{\#Correctly\ Predicted}{\#Total}$ $F1 = \frac{2*Prec.*\ Rec.}{(Rec. + Prec.)}$

■ Experiment results on the development and test data of English Switchboard data

Method	Dev			Test		
Wictiou	P	R	F1	P	R	F1
CRF	93.8%	77.7%	85.0%	92.0%	74.5%	82.3%
Attention-based method	93.0%	81.6%	86.9%	91.6%	82.3%	86.7%

□ Comparison with the previous state-of-the-art methods

Method	P	R	F1
Attention-based	91.6%	82.3%	86.7%
M ³ N (Qian and Liu, 2013)	-	-	84.1%
Joint Parser (Honnibal and Johnson, 2014)	_	-	84.1%
semi-CRF (Ferguson et al., 2015)	90.1%	80.0%	84.8%
UBT (Wu et al., 2015)	90.3%	80.5%	85.1%

□ Comparison with the previous state-of-the-art methods

Method	P	R	F 1	
Attention-based	91.6%	82.3%	86.7%	
M ³ N (Qian and Liu, 2013)	-	-	84.1%	+1.9%
Joint Parser (Honnibal and Johnson, 2014)	-	-	84.1%	
semi-CRF (Ferguson et al., 2015)	90.1%	80.0%	84.8%	,
UBT (Wu et al., 2015)	90.3%	80.5%	85.1%	

□ Comparison with the previous state-of-the-art methods

Method	P	R	F 1	
Attention-based	91.6%	82.3%	86.7%	
M ³ N (Qian and Liu, 2013)	_	-	84.1%	+1.6%
Joint Parser (Honnibal and Johnson, 2014)	_	-	84.1%	/
semi-CRF (Ferguson et al., 2015)	90.1%	80.0%	84.8%	,
UBT (Wu et al., 2015)	90.3%	80.5%	85.1%	

Chines Experimental Setting

- In-house annotated Chinese corpus
 - □ 200k spoken sentences from minutes of meetings
 - □ Training data: 160k sentences
 - Dev data: 20k sentences
 - Test data: 20k sentences

Chinese Experiment results

performance on Chinese annotated data

Method	Dev			Test		
Wichiod	P	R	F1	P	R	F1
CRF	76.5%	42.0%	54.2%	75.9%	41.6%	53.8%
Attention-based method	83.7%	50.6%	63.1%	82.4%	48.9%	61.4%

Chinese Experiment results

performance on Chinese annotated data

Method	Dev			Test		
Wichiod	P	R	F1	P	R	F1
CRF	76.5%	42.0%	54.2%	75.9%	41.6%	53.8%
Attention-based method	83.7%	50.6%	63.1%	82.4%	48.9%	61.4%

- □ http://www.iflyrec.com/
 - ☐ The online disfluency detection has a much better F1-score

Conclusion

- We try to use the sequence-to-sequence framework for the problem of disfluency detection
- Propose a novel attention-based model for disfluency detection

Conclusion

- We try to use the sequence-to-sequence framework for the problem of disfluency detection
- Propose a novel attention-based model for disfluency detection
 - Utilize the global representation of the sentence
 - □ Take into account the language model
 - Achieve the state-of-art results on both English Switchboard corpus and in-house annotated Chinese corpus

Future work

☐ Greedy search is used in our work and can result in serious error propagation

□ Explore the beam search method on this neural structure

Thank you!

理解语言 认知社会