Knowledge Distillation

Teacher

dataset

Xiachong Feng

Pic https://data-soup.gitlab.io/blog/knowledge-distillation/

Outline

- Why Knowledge Distillation?
- Distilling the knowledge in a neural network NIPS2014
- Model Compression
 - Distilling Task-Specific Knowledge from BERT into Simple Neural Networks arxiv 2018
- Multi-Task Setting
 - Improving Multi-Task Deep Neural Networks via Knowledge Distillation for Natural Language Understanding *arxiv*
 - BAM! Born-Again Multi-Task Networks for Natural Language Understanding
- Seq2Seq NMT
 - Sequence level knowledge distillation *EMNLP16*
- Cross Lingual NLP
 - Cross-lingual Distillation for Text Classification ACL17
 - Zero-Shot Cross-Lingual Neural Headline Generation IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, 2018
- Variant
 - Exploiting the Ground-Truth: An Adversarial Imitation Based Knowledge Distillation Approach for Event Detection *AAAI19*
- Paper List
- Reference
- Conclusion

Cost

- BERTlarge
 - Contains 24 transformer layers with 344 million parameters
 - 16 Cloud TPU | 4 days
 - 12000 dollars

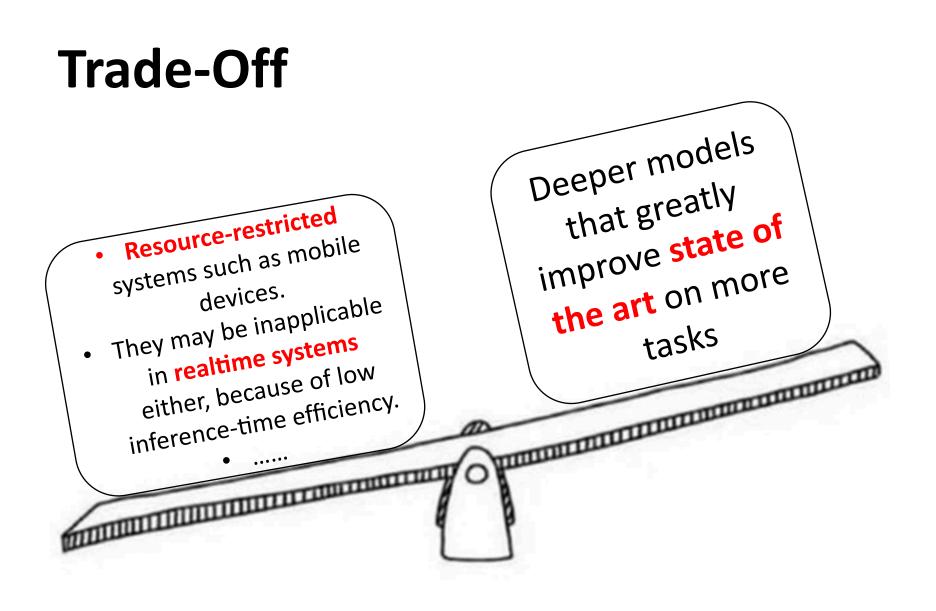
• GPT-2

- Contains 48 transformer layers with 1.5 billion parameters
- 64 Cloud TPU v3 | one week
- 43000 dollars

• XLNet

- 128 Cloud TPU v3 | Two and a half days
- 61000 dollars

XLNet 训练成本6万美元,顶5个BERT,大模型「身价」惊人 https://zhuanlan.zhihu.com/p/71609636?utm_source=wechat_session&utm_me dium=social&utm_oi=71065644564480&from=timeline&isappinstalled=0&s_r=0



Distilling Task-Specific Knowledge from BERT into Simple Neural Networks

Knowledge Distillation

Knowledge distillation is a process of distilling or transferring the knowledge from a (set of) large, cumbersome model(s) to a lighter, easier-to-deploy single model, without significant loss in performance.

Improving Multi-Task Deep Neural Networks via Knowledge Distillation for Natural Language Understanding

Hot Topic

ensembles. Model ensembles are a pretty much guaranteed way to gain 2% of accuracy on anything. If you can't afford the computation at test time look into distilling your ensemble into a network using dark knowledge.

> Andrej Karpathy A Recipe for Training Neural Networks http://karpathy.github.io/2019/04/25/recipe/

Hot Topic

6、提供一个轻量级的 BERT 替代方案 BERB: Bidirectional Encoder Representation from BiRNN。大家都惊叹于 BERT 所需的巨大的计算资源。但实际上,假如采用一个真双向 RNN(就是 高层可以同时看到底层正反向的信息的那种),堆个 4 层或者 6 层(而不需要像本文一样弄 24 层),然后同样使用 MLM 和 NSP 两个目标来训练,需要的计算资源应该会少很多,并且完全用到 了 BERT 模型核心的改进点。至于效果的话我预期会比 BERT 差一些,但是应该会比现有的其他方 法好。RNN 堆的层数深了以后可能会难以训练,所以可能需要加 residual connection 或者 layer normalization。这里也带出了 Transformer 的另一个优越之处,那就是自带各种 normalization, 堆很多层照样能稳定训练。当然,把预训练好的 BERT 蒸馏成 BERB 也是可以的。(更新:现在已 经有人这么做了。)

Towser 如何评价BERT模型

https://www.zhihu.com/question/298203515/answer/509923837

3. 更快的BERT

用更低的精度呢? INT8行不行? 三值网络行不行? 二值网络行不行?

精简transformer呢?研究更高效的transformer?

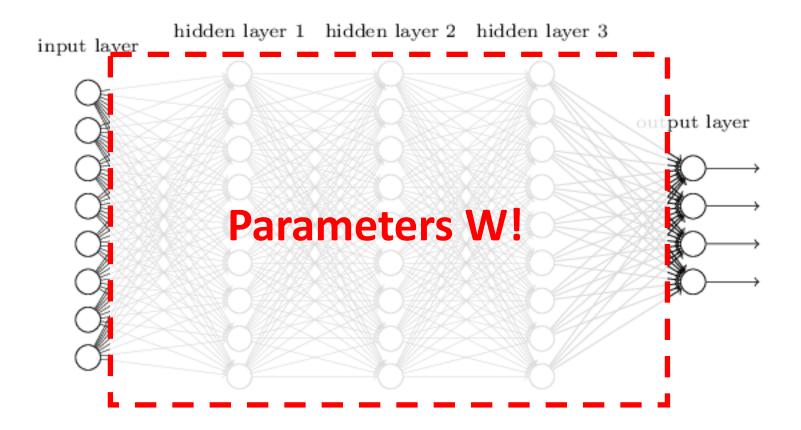
霍华德 BERT模型在NLP中目前取得如此好的效果,那下一步NLP该何去何从? https://www.zhihu.com/question/320606353/answer/658786633

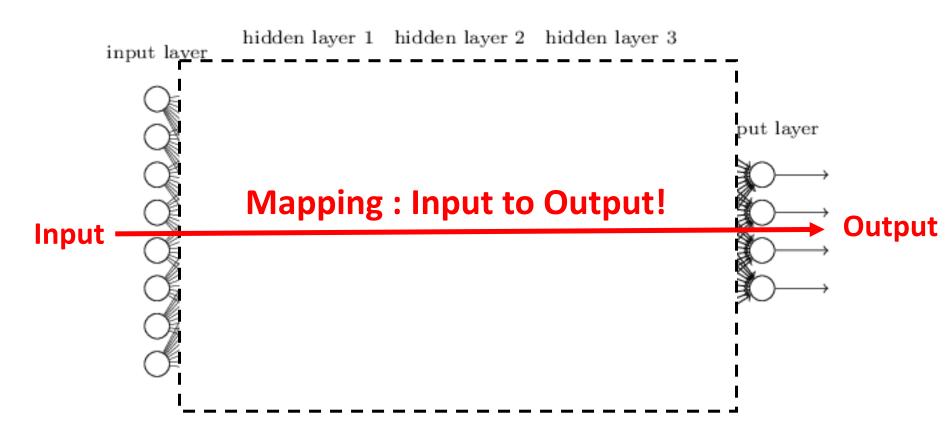
Distilling the Knowledge in a Neural Network

Hinton NIPS 2014 Deep Learning Workshop

Model Compression

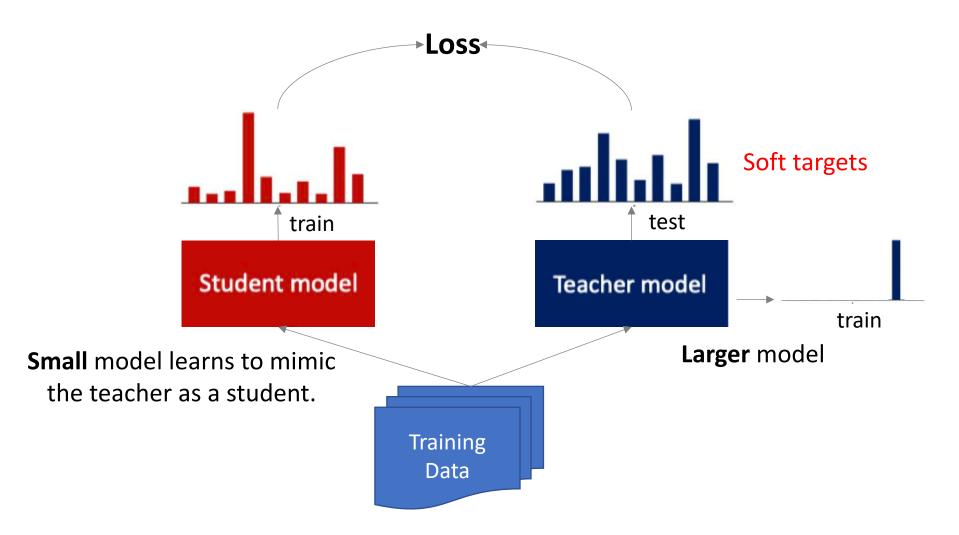
- Ensemble model
 - Cumbersome and may be too computationally expensive
- Solution
 - The knowledge acquired by a large ensemble of models can be transferred to a single small model.
 - We call "distillation" to transfer the knowledge from the cumbersome model to a small model that is more suitable for deployment.



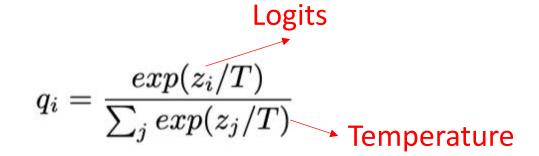


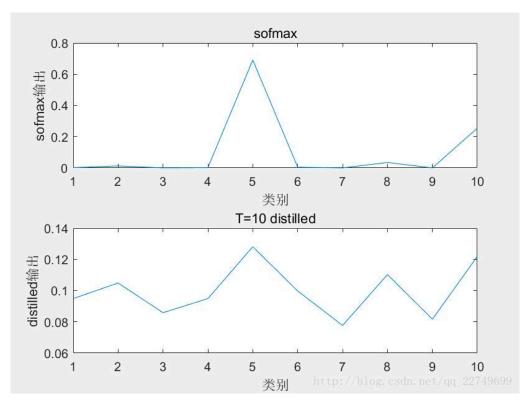
A more abstract view of the knowledge, that frees it from any **particular instantiation**, is that it is a learned mapping from input vectors to output vectors.

Knowledge Distillation



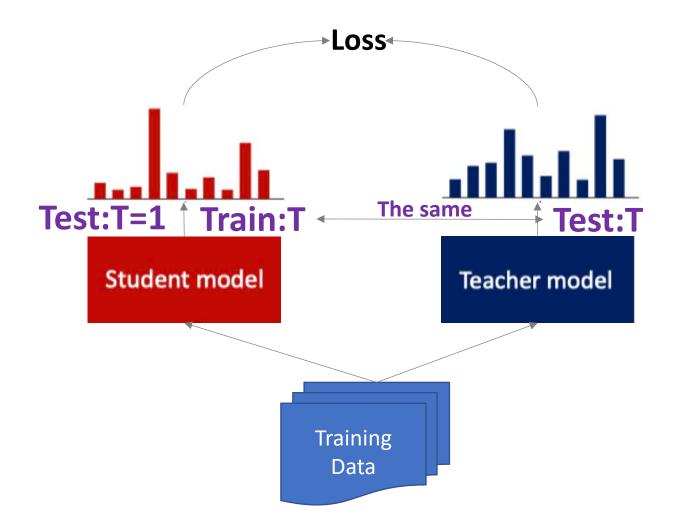
Softmax With Temperature





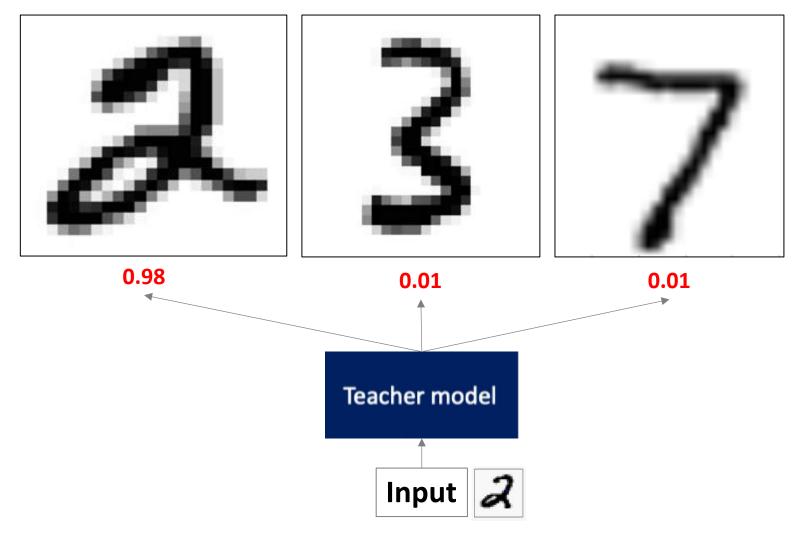
https://blog.csdn.net/qq_22749699/article/details/79460817

Note



Soft Targets

Soft targets

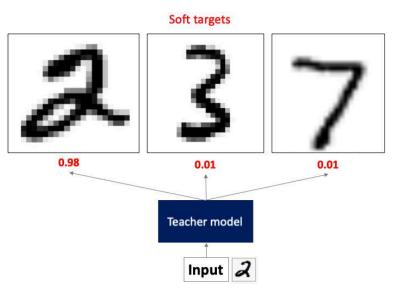


Soft target

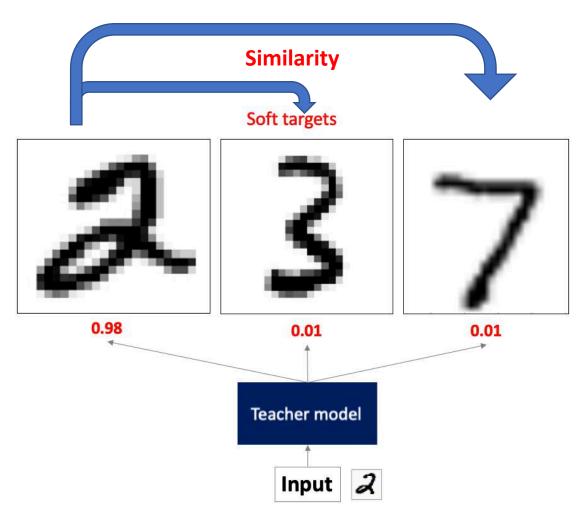
- Contiguous distribution • Discrete distribution
- Between-Class distance \checkmark Between-Class distance

One-hot

- 2 is similar to 3 and 7
 2 independent of 3 and 7.



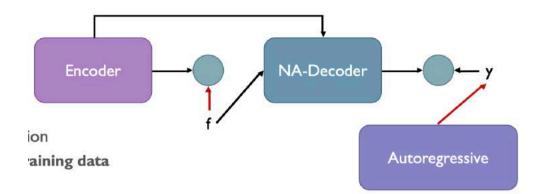
Naiyan Wang https://www.zhihu.com/question/50519680/answer/136363665



周博磊 https://www.zhihu.com/question/50519680/answer/136359743

• NMT : Real translation data has many modes.

• MLE training tends to use a single-mode model to cover multiple modes.

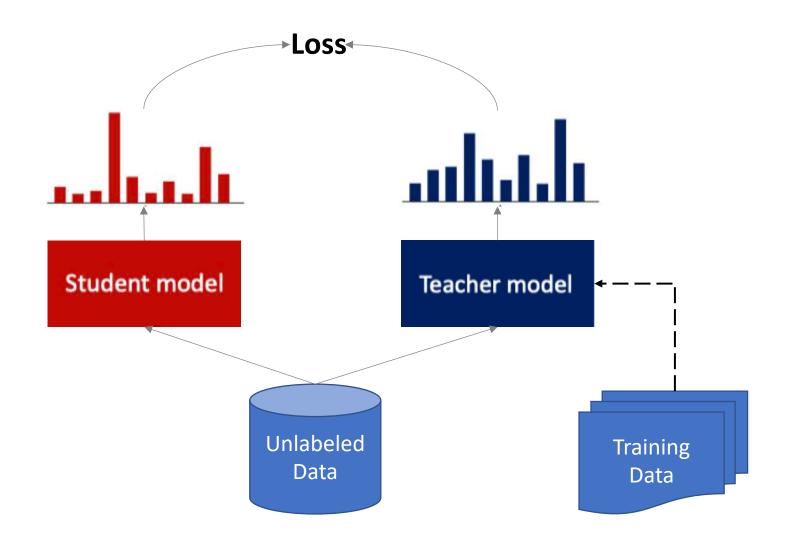


Jiatao Gu Non-Autoregressive Neural Machine Translation https://zhuanlan.zhihu.com/p/34495294

Soft Targets

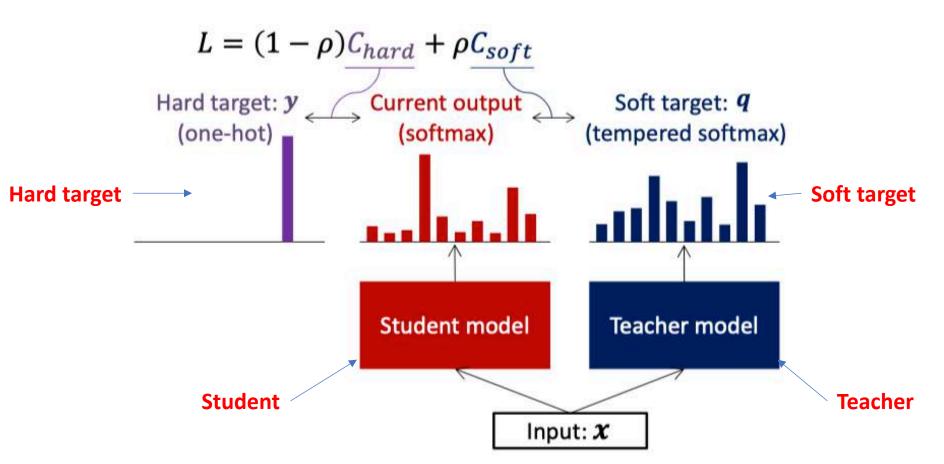
- 1. Supervisory signals
- 2. Data augmentation
- 3. Reduce Modes

How to use unlabeled data?

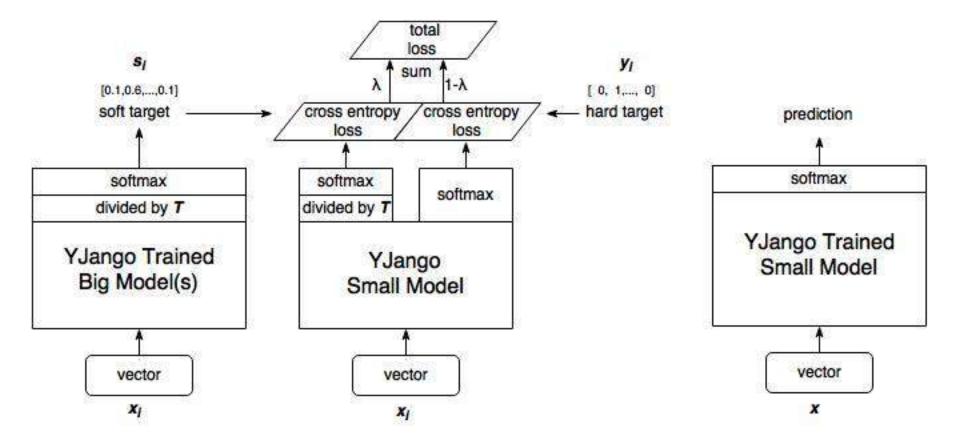


Loss function

Transfer set = unlabeled data + original training set



Knowledge Distillation



如何理解soft target这一做法?Yjango https://www.zhihu.com/question/50519680?sort=created

Outline

- Why Knowledge Distillation?
- Distilling the knowledge in a neural network NIPS2014
- Model Compression
 - Distilling Task-Specific Knowledge from BERT into Simple Neural Networks arxiv 2018
- Multi-Task Setting
 - Improving Multi-Task Deep Neural Networks via Knowledge Distillation for Natural Language Understanding *arxiv*
 - BAM! Born-Again Multi-Task Networks for Natural Language Understanding
- Seq2Seq NMT
 - Sequence level knowledge distillation *EMNLP16*
- Cross Lingual NLP
 - Cross-lingual Distillation for Text Classification ACL17
 - Zero-Shot Cross-Lingual Neural Headline Generation IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, 2018
- Variant
 - Exploiting the Ground-Truth: An Adversarial Imitation Based Knowledge Distillation Approach for Event Detection *AAAI19*
- Paper List
- Reference
- Conclusion

Distilling Task-Specific Knowledge from BERT into Simple Neural Networks

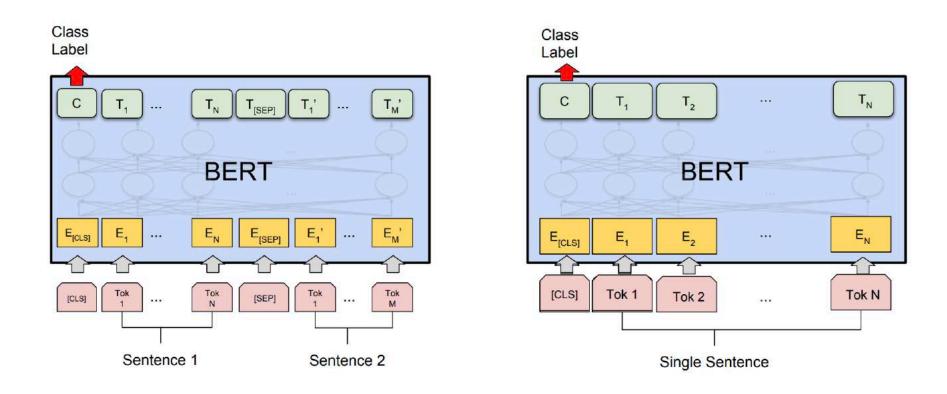
University of Waterloo arxiv

Overview

- Distill knowledge from BERT, a state-of-the-art language representation model, into a single-layer BiLSTM
- Task
 - 1. Binary sentiment classification
 - 2. Multi-genre Natural Language Inference
 - 3. Quora Question Pairs redundancy classification
- Achieve comparable results with ELMo, while using roughly 100 times fewer parameters and 15 times less inference time.

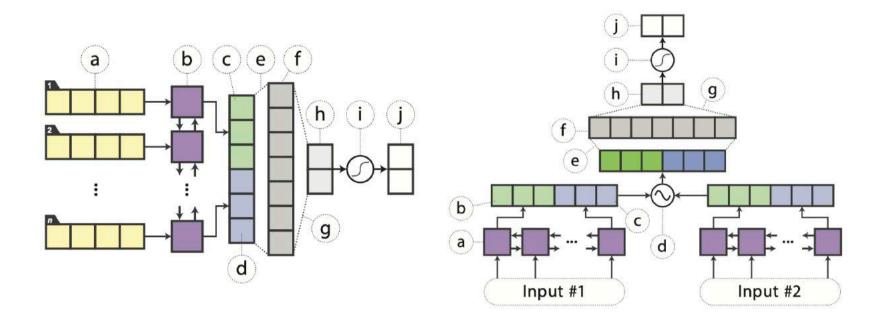
Teacher Model

• Teacher Model: *BERT*_{large}



Student Model

• **Student Model :** Single-layer Bi-LSTM with a nonlinear classifier

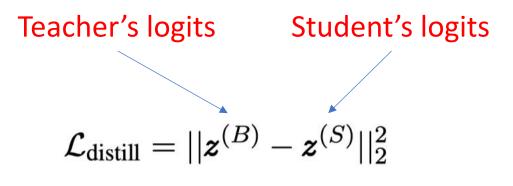


Data Augmentation for Distillation

- In the distillation approach, a small dataset may not suffice for the teacher model to fully express its knowledge. Augment the training set with a large, unlabeled dataset, with pseudo-labels provided by the teacher
- Method
 - **Masking**. With probability pmask , we randomly replace a word with [MASK],
 - **POS-guided word replacement**. With probability ppos, we replace a word with another of the same POS tag.
 - **n-gram sampling.** With probability png , we randomly sample an n-gram from the example, where n is randomly selected from {1, 2, ..., 5}.

Distillation objective

- Mean-squared-error (MSE) loss between the student network's logits against the teacher's logits.
- MSE to perform slightly better.



$$egin{split} \mathcal{L} &= lpha \cdot \mathcal{L}_{ ext{CE}} + (1-lpha) \cdot \mathcal{L}_{ ext{distill}} \ &= -lpha \sum_i t_i \log y_i^{(S)} - (1-lpha) || oldsymbol{z}^{(B)} - oldsymbol{z}^{(S)} ||_2^2 \end{split}$$

Result

#	Model	SST-2	QQP	MNLI-m	MNLI-mm
		Acc	F ₁ /Acc	Acc	Acc
1	BERT _{LARGE} (Devlin et al., 2018)	94.9	72.1/89.3	86.7	85.9
2	BERT _{BASE} (Devlin et al., 2018)	93.5	71.2/89.2	84.6	83.4
3	OpenAI GPT (Radford et al., 2018)	91.3	70.3/88.5	82.1	81.4
4	BERT ELMo baseline (Devlin et al., 2018)	90.4	64.8/84.7	76.4	76.1
5	GLUE ELMo baseline (Wang et al., 2018)	90.4	63.1/84.3	74.1	74.5
6	Distilled BiLSTM _{SOFT}	90.7	68.2/88.1	73.0	72.6
7	BiLSTM (our implementation)	86.7	63.7/86.2	68.7	68.3
8	BiLSTM (reported by GLUE)	85.9	61.4/81.7	70.3	70.8
9	BiLSTM (reported by other papers)	87.6^{\dagger}	– /82.6 [‡]	66.9 [*]	66.9 [*]

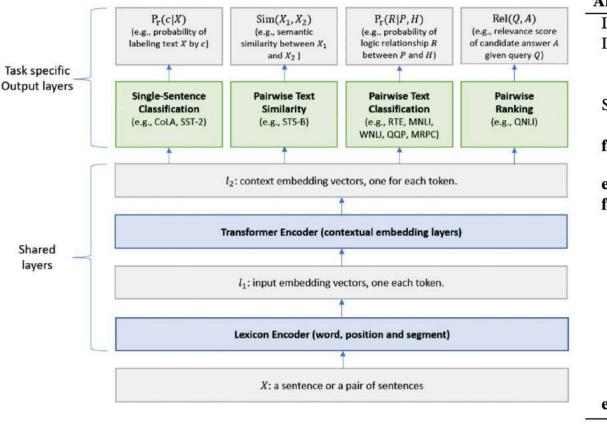
Outline

- Why Knowledge Distillation?
- Distilling the knowledge in a neural network NIPS2014
- Model Compression
 - Distilling Task-Specific Knowledge from BERT into Simple Neural Networks arxiv 2018
- Multi-Task Setting
 - Improving Multi-Task Deep Neural Networks via Knowledge Distillation for Natural Language Understanding *arxiv*
 - BAM! Born-Again Multi-Task Networks for Natural Language Understanding
- Seq2Seq NMT
 - Sequence level knowledge distillation EMNLP16
- Cross Lingual NLP
 - Cross-lingual Distillation for Text Classification ACL17
 - Zero-Shot Cross-Lingual Neural Headline Generation IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, 2018
- Variant
 - Exploiting the Ground-Truth: An Adversarial Imitation Based Knowledge Distillation Approach for Event Detection *AAAI19*
- Paper List
- Reference
- Conclusion

Improving Multi-Task Deep Neural Networks via Knowledge Distillation for Natural Language Understanding

Microsoft

MT-DNN

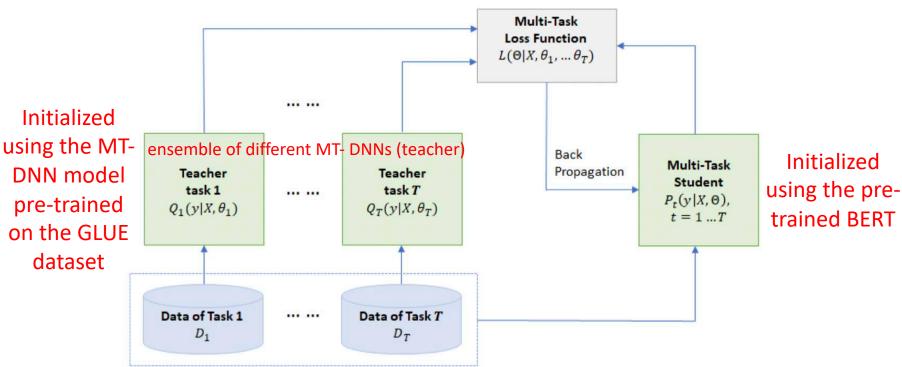


pre-training stage

Algorithm 1: Training a MT-DNN model. Initialize model parameters Θ randomly. Initialize the shared layers (i.e., the lexicon encoder and the transformer encoder) using a pre-trained BERT model. Set the max number of epoch: $epoch_{max}$. //Prepare the data for T tasks. for t in 1, 2, ..., T do Pack the dataset t into mini-batch: D_t . end for epoch in $1, 2, \dots, epoch_{max}$ do 1. Merge all the datasets: $D = D_1 \cup D_2 \dots \cup D_T$ 2. Shuffle D for b_t in D do lb_t is a mini-batch of task t. 3. Compute task-specific loss : $L_t(\Theta)$ 4. Compute gradient: $\nabla(\Theta)$ 5. Update model: $\Theta = \Theta - \epsilon \nabla(\Theta)$ end end MTL stage

Multi-task deep neural networks for natural language understanding

Distillation



correct targets + soft targets

- The parameters of its shared layers are initialized using the MT-DNN model pretrained on the GLUE dataset via MTL, as in Algorithm 1, and the parameters of its task-specific output layers are randomly initialized.
- Disttilled MT-DNN significantly outperforms the original MT-DNN on 7 out of 9 GLUE tasks(single model).

Teacher Annealing

- BAM! Born-Again Multi-Task Networks for Natural Language Understanding
- **Born Again** : the student has the same model architecture as the teacher.

$$CE(\lambda y_{ au}^{i}+(1-\lambda)p_{ au}(y|x_{ au}^{i}, heta_{ au}),p_{ au}(y|x_{ au}^{i}, heta))$$

 λ is linearly increased from 0 to 1

Outline

- Why Knowledge Distillation?
- Distilling the knowledge in a neural network NIPS2014
- Model Compression
 - Distilling Task-Specific Knowledge from BERT into Simple Neural Networks arxiv 2018
- Multi-Task Setting
 - Improving Multi-Task Deep Neural Networks via Knowledge Distillation for Natural Language Understanding *arxiv*
 - BAM! Born-Again Multi-Task Networks for Natural Language Understanding
- Seq2Seq NMT
 - Sequence level knowledge distillation EMNLP16
- Cross Lingual NLP
 - Cross-lingual Distillation for Text Classification ACL17
 - Zero-Shot Cross-Lingual Neural Headline Generation IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, 2018
- Variant
 - Exploiting the Ground-Truth: An Adversarial Imitation Based Knowledge Distillation Approach for Event Detection *AAAI19*
- Paper List
- Reference
- Conclusion

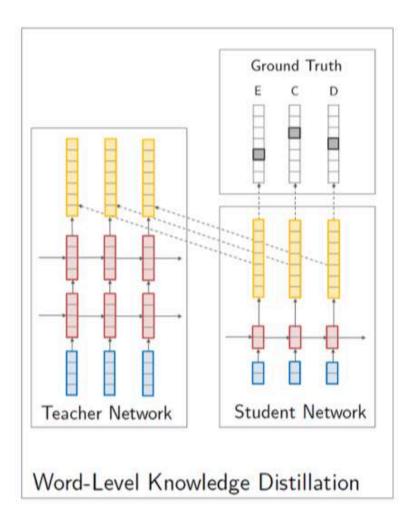
Sequence level knowledge distillation

EMNLP16 Yoon Kim Harvard

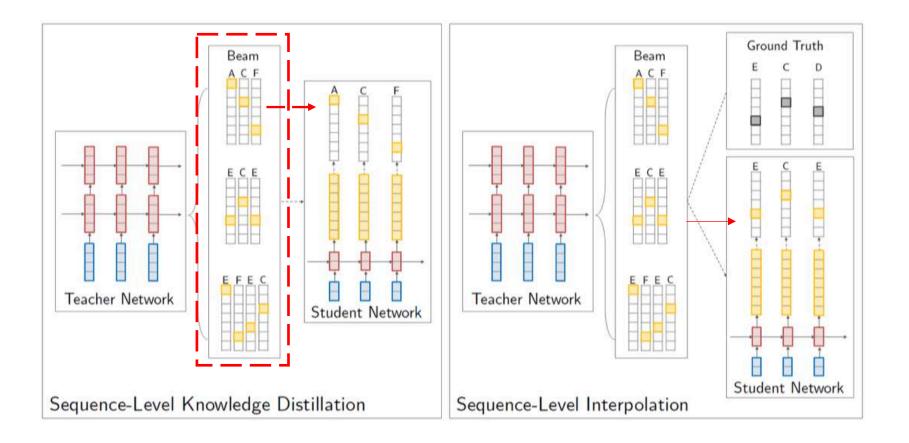
Seq2Seq

- Non-recurrent models in the multiclass prediction setting
- Method
 - Word-level Distillation
 - Two novel **sequence-level** versions of knowledge distillation
 - Sequence-Level Knowledge Distillation
 - Sequence-Level Interpolation

Word-Level



Sentence Level



Result

- Large state-of-the-art 4 \times 1000 LSTM
 - → 2 × 500 LSTM
- Not requiring any beam search at test-time. As a result we are able to perform greedy decoding on the 2 × 500 model 10 times faster than beam search on the 4 × 1000 model with comparable performance.

Outline

- Why Knowledge Distillation?
- Distilling the knowledge in a neural network NIPS2014
- Model Compression
 - Distilling Task-Specific Knowledge from BERT into Simple Neural Networks arxiv 2018
- Multi-Task Setting
 - Improving Multi-Task Deep Neural Networks via Knowledge Distillation for Natural Language Understanding *arxiv*
 - BAM! Born-Again Multi-Task Networks for Natural Language Understanding
- Seq2Seq NMT
 - Sequence level knowledge distillation *EMNLP16*
- Cross Lingual NLP
 - Cross-lingual Distillation for Text Classification ACL17
 - Zero-Shot Cross-Lingual Neural Headline Generation IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, 2018
- Variant
 - Exploiting the Ground-Truth: An Adversarial Imitation Based Knowledge Distillation Approach for Event Detection *AAAI19*
- Paper List
- Reference
- Conclusion

Cross-lingual Distillation for Text Classification

ACL17 CMU

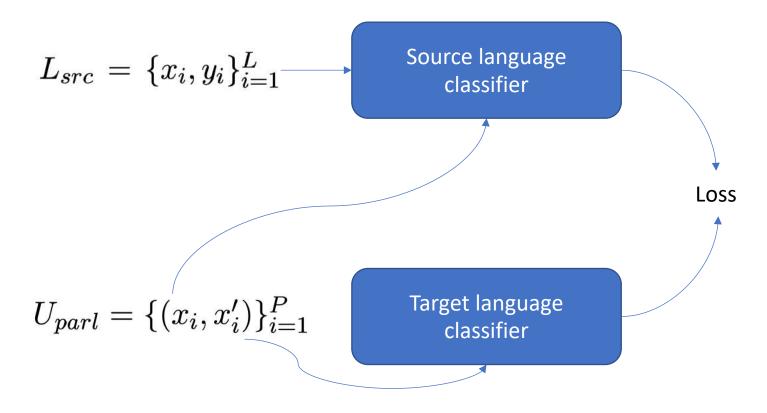
Overview

- Task
 - Cross-lingual text classification(CLTC) is the task of classifying documents written in different languages into the same taxonomy of categories.
- Problem
 - How can we effectively leverage the trained classifiers in a label-rich source language to help the classification of documents in other labelpoor target languages?
- Method
 - Vanilla version
 - Distillation with Adversarial Feature Adaptation

Vanilla version

- The **first** step of our framework is to train the **source-language classifier** on labeled source documents $L_{src} = \{x_i, y_i\}_{i=1}^{L}$.
- In the second step, the knowledge captured in θ_{src} is transferred to the distilled model in the target language by training it on the parallel corpus. $U_{parl} = \{(x_i, x'_i)\}_{i=1}^P$

Vanilla version



- Intution
 - The intuition is that paired documents in parallel corpus should have the same distribution of class predicted by the source model and target model.

Problem

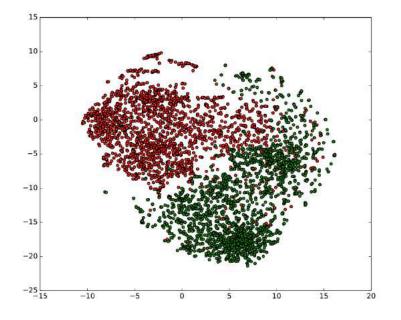
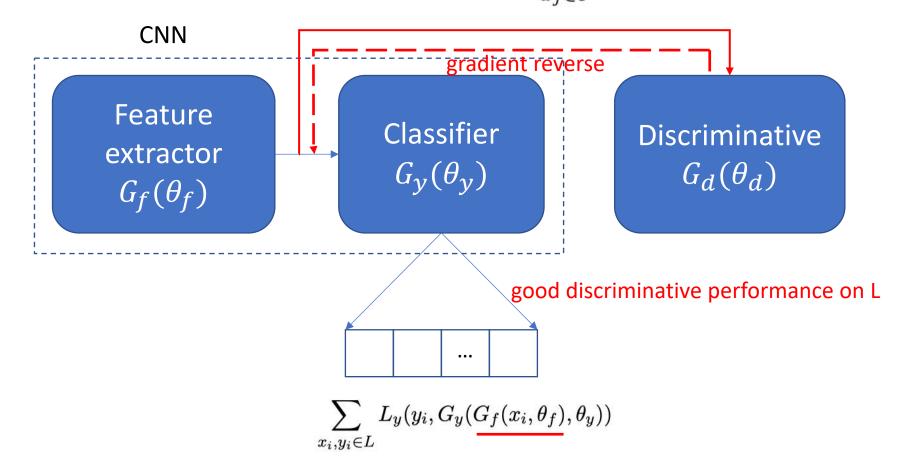


Figure 1: Extracted features for source-language documents in the English-Chinese Yelp Hotel Review dataset. Red dots represent features of the documents in L_{src} and green dots represent the features of documents in U_{parl} , which is a general-purpose parallel corpus.

Distillation with Adversarial Feature Adaptation $= \alpha \sum L_1(0) G_2(G_2(x; \theta_1); \theta_2)$

extracts features which have similar distributions on L and L

$$-\alpha \sum_{x_i \in L} L_d(0, G_d(\underline{G_f(x_i, \theta_f)}, \theta_d))$$
$$\cup -\alpha \sum_{x_i \in U} L_d(1, G_d(\underline{G_f(x_j, \theta_f)}, \theta_d))$$



Zero-Shot Cross-Lingual Neural Headline Generation

Ayana, Shi-qi Shen, Yun Chen, Cheng Yang, Zhi-yuan Liu, and Mao-song Sun

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 26, NO. 12, DECEMBER 2018

Cross-lingual headline generation

- Task
 - Produce a headline in a target language (e.g., Chinese) given a document in a different source language (e.g., English).
- Problem
 - Lack of those parallel corpora of direct source language articles and target language headlines,
 - Error propagation in the translation and summarization phases.

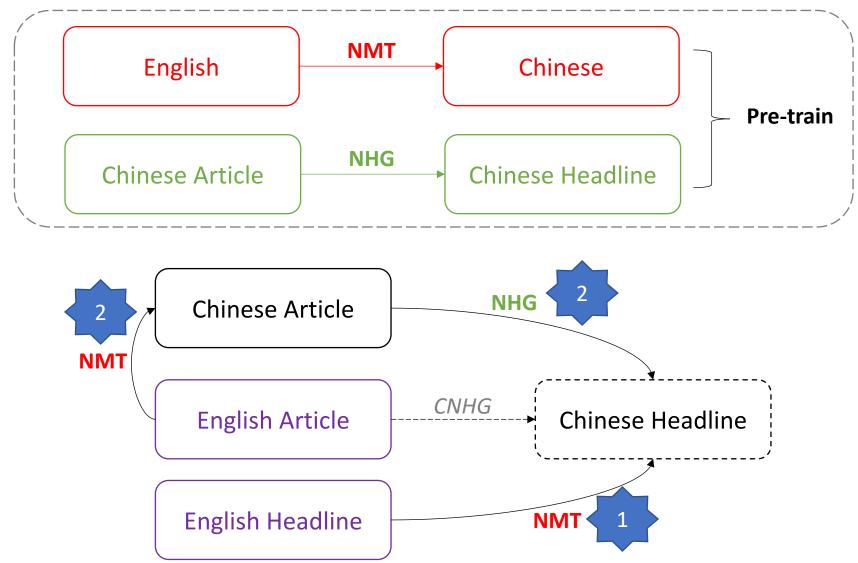
Asian-Pacific summit faces major economic and political challenges 亚太 首脑 会议 面临 重大 经济 和 政治 挑战

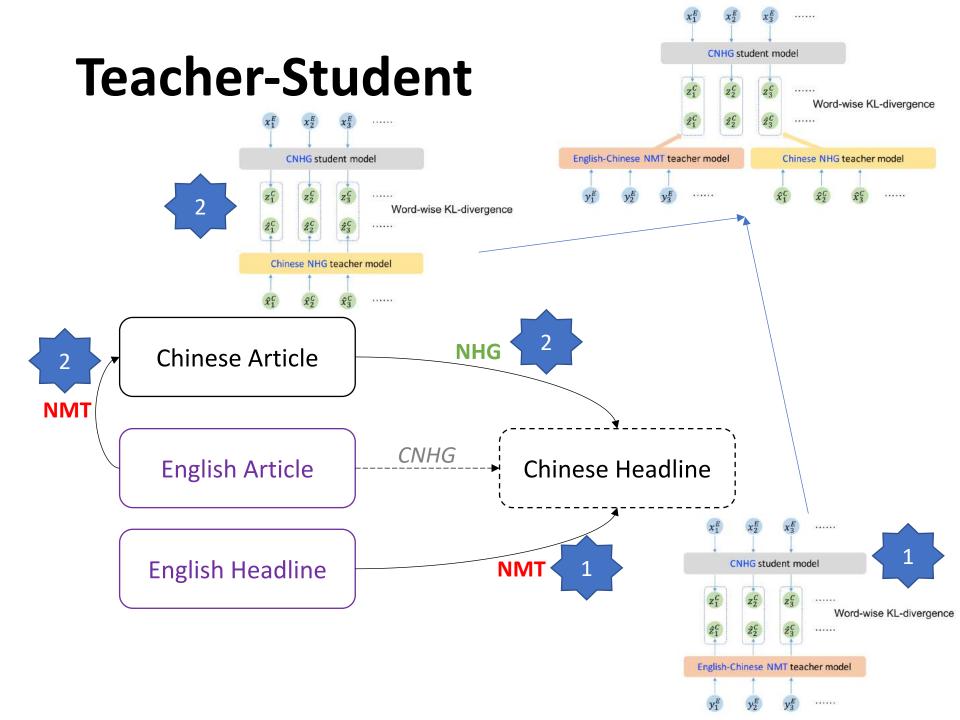
The last time the Asia-Pacific region held its annual summit to promote free trade, Japan's prime minister assured everyone that his economy wouldn't be the next victim of Asia's financial crisis ...

Corpus

- English headline generation
 - Gigaword
- Chinese headline generation
 - LCSTS
- English-Chinese translation
 - LDC2002E18, LDC2003E07, LDC2003E14, part of LDC2004T07, LDC2004T08 and LDC2005T06.

Model





Outline

- Why Knowledge Distillation?
- Distilling the knowledge in a neural network NIPS2014
- Model Compression
 - Distilling Task-Specific Knowledge from BERT into Simple Neural Networks arxiv 2018
- Multi-Task Setting
 - Improving Multi-Task Deep Neural Networks via Knowledge Distillation for Natural Language Understanding *arxiv*
 - BAM! Born-Again Multi-Task Networks for Natural Language Understanding
- Seq2Seq NMT
 - Sequence level knowledge distillation *EMNLP16*
- Cross Lingual NLP
 - Cross-lingual Distillation for Text Classification ACL17
 - Zero-Shot Cross-Lingual Neural Headline Generation IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, 2018
- Variant
 - Exploiting the Ground-Truth: An Adversarial Imitation Based Knowledge Distillation Approach for Event Detection *AAAI19*
- Paper List
- Reference
- Conclusion

Exploiting the Ground-Truth: An Adversarial Imitation Based Knowledge Distillation Approach for Event Detection

AAAI19

Jian Liu , Yubo Chen , Kang Liu

National Laboratory of Pattern Recognition, Institute of Automation

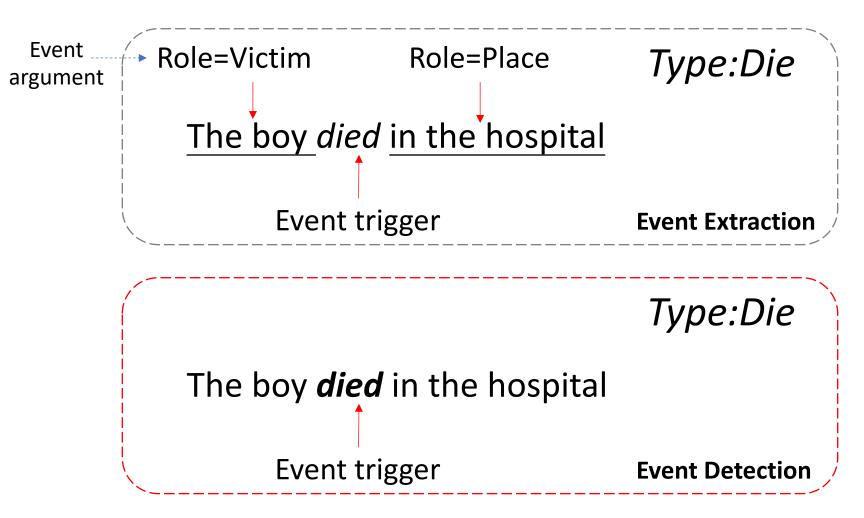
Author

陈玉博 Associate Professor 2017 赵军 Event Extraction , Relation Extraction and Knowledge Graph Construction .

刘康 Associate Professor Sentiment Analysis, Information Extraction, Question Answering

Event Detection

• Event Detection ∈ Event Extraction



Problem

- Ambiguity
 - The same event can be expressed in a wide variation
 - Depending on the context, the same expression might refer to entirely different events.

Transfer-Money

- S1: The European Unit is set to release 20 million euros to Iraq.
- S2: The government reports that <u>Anwar</u>'s earliest release date is <u>April 14</u>. Release-Parole

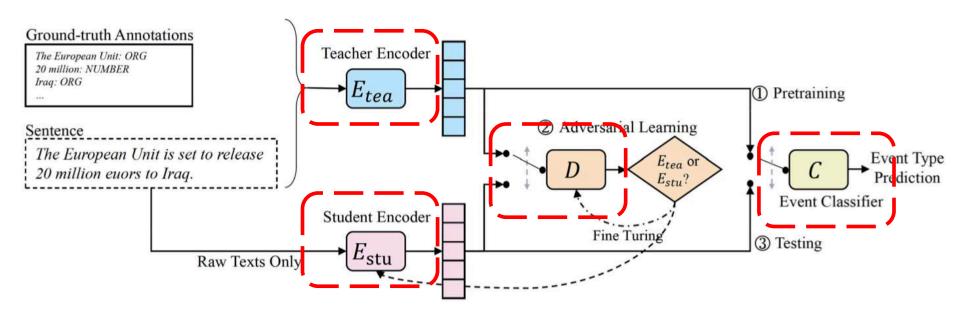
Previous

• Chunk knowledge corresponding to the sentences can provide evidence for event type disambiguation

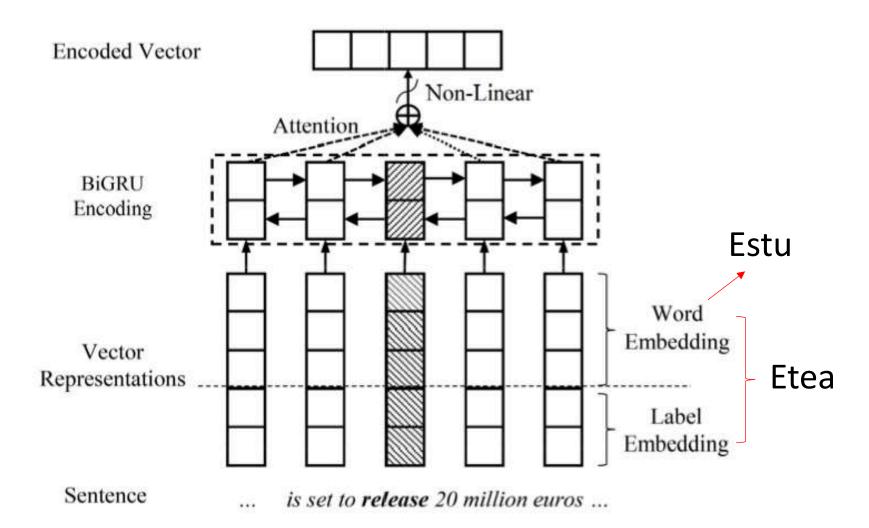
```
The European Unit: ORG
20 million: NUMBER
Iraq: ORG
...
```

- Problem
 - In the real test scenario where the ground-truth annotations are missing.
 - Pipline Error propagation

Model



Attention Based Encoder



Binary Classification-Based Discriminator

• Input

$$f^{(w_t)}$$
 (either $f^{(w_t)}_{tea}$ or $f^{(w_t)}_{stu}$)

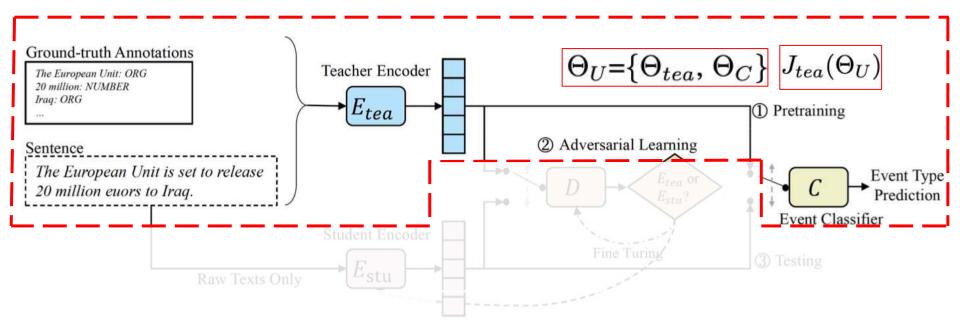
- Output
 - A probability *p* that indicates the probability that D thinks f(wt) comes from Etea .

$$p = D(f^{(w_t)}) = \sigma(W_h(tanh(W_x f^{(w_t)} + b_x)) + b_h)$$

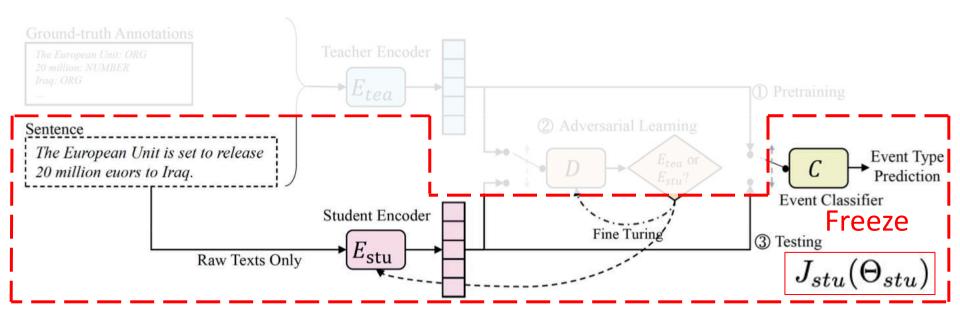
Multi-class Event Classifier

$out = softmax(W_o \cdot f^{(w_t)} + b_o))$ $P(l|f, \Theta) = out_{(l)}$

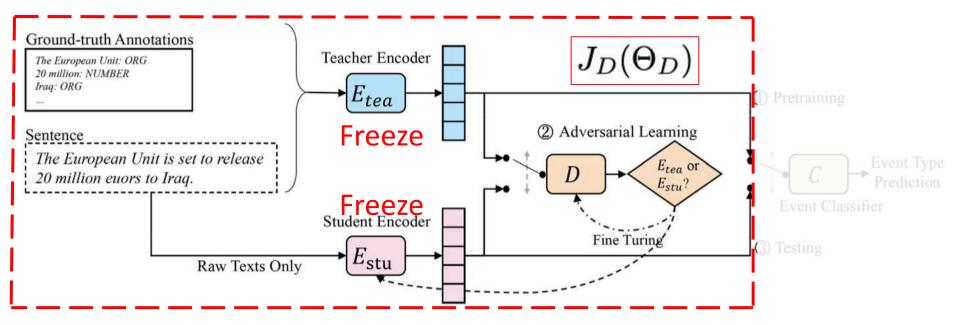
- In the **Pretraining Stage:**
 - concatenate Etea and C to form an event detector



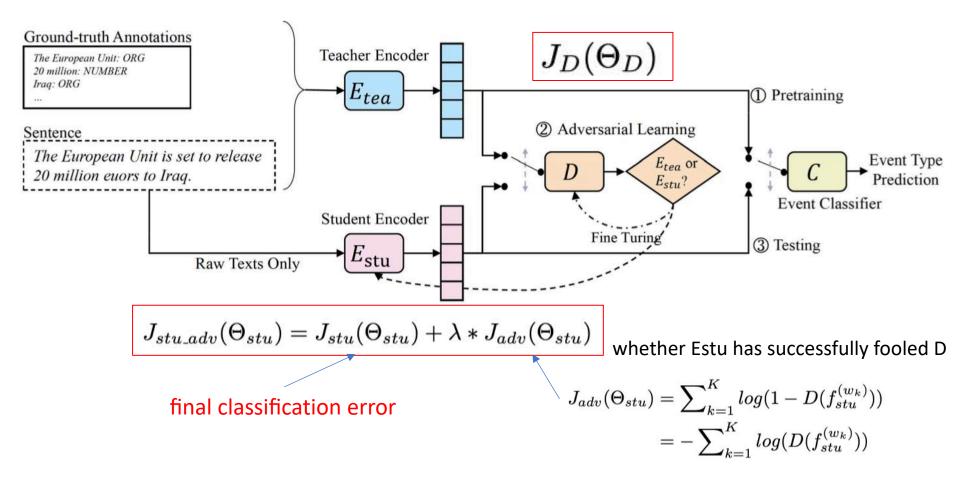
- In the **Pretraining Stage:**
 - concatenate Etea and C to form an event detector
 - freeze the event classifier C, and we concatenate Estu and C to build a raw-sentences event detector.



- In the Pretraining Stage:
 - concatenate Etea and C to form an event detector
 - freeze the event classifier C, and we concatenate Estu and C to build a raw-sentences event detector.
 - freeze both Etea and Estu , outputs of Etea as positive examples (labeled as 1s) and the outputs of Estu as negative examples (labeled as 0s) to pretrain D.



• In the Adversarial learning Stage



Experiments

- ACE 2005 corpus
- 34-class classification problem (33+None)

Performance on Gold-truth Annotations

Model	Р	R	$\mathbf{F_1}$
CrossEntity (Hong et al.)	72.9	64.3	68.3
CNNED (Nguyen and Grishman)	71.8	66.4	69.0
DLRNN (Duan, He, and Zhao)	77.2	64.9	70.5
ArgATT (Liu et al.)	78.0	66.3	71.7
Teacher + emb word	71.9	66.0	68.8
Teacher + emb + ety entity	71.6	69.1	70.3
<i>Teacher</i> + <i>emb</i> + <i>agt</i> event-argument	76.3	72.4	74.2
Teacher + emb + ety + agt	76.8	72.9	74.8

Table 1: Experimental results on the ACE 2005 English set. Bold indicates the best performance with respective to each evaluation metric.

Performance in the Real Testing Scenario

-	Setting	Model	P	R	$\mathbf{F_1}$
-		$CNNED^{\ddagger}$	71.8	66.4	69.0
Golden LSTM-CRF taggers Predicted Adv	Golden	$ArgATT^{\ddagger}$	78.0	66.3	71.7
		Teacher	76.8	72.9	74.8
		$CNNED^{\ddagger}$	71.9	63.8	67.6
	Predicted	ArgATT	76.1	66.0	70.7
		Teacher	72.4	68.9	70.6
	Adv	Student-Final	73.4	69.1	71.2

Table 2: Experimental results on ACE 2005 English corpus. *Golden/Predicted* means resorting to golden/predicted annotations. [‡] indicates taken from the original paper. Bold indicates the best performance.

Paper List

Knowledge Distillation

Paper	Conference	
Distilling Task-Specific Knowledge from BERT into Simple Neural Networks		
BAM! Born-Again Multi-Task Networks for Natural Language Understanding		
Improving Multi-Task Deep Neural Networks via Knowledge Distillation for Natural Language Understanding		
Exploiting the Ground-Truth: An Adversarial Imitation Based Knowledge Distillation Approach for Event Detection	AAAI19	
Distilling Knowledge for Search-based Structured Prediction	ACL18	
On-Device Neural Language Model based Word Prediction	COLING18	
Zero-Shot Cross-Lingual Neural Headline Generation	IEEE/ACM TRANSACTIONS 18	
Cross-lingual Distillation for Text Classification	ACL17	
DOMAIN ADAPTATION OF DNN ACOUSTIC MODELS USING KNOWLEDGE DISTILLATION	ICASSP17	
Sequence-Level Knowledge Distillation	EMNLP16	
Distilling Word Embeddings: An Encoding Approach	CIKM16	
Distilling the Knowledge in a Neural Network	NIPS14 Deep Learnin Workshop	

Reference

- 1. WHAT IS KNOWLEDGE DISTILLATION? https://data-soup.gitlab.io/blog/knowledge-distillation/
- 2. 李如【DL】模型蒸馏 Distillation https://zhuanlan.zhihu.com/p/71986772
- 3. Towser 如何评价BERT模型https://www.zhihu.com/question/298203515/answer/509923837
- 4. 霍华德 BERT模型在NLP中目前取得如此好的效果,那下一步NLP该何去何从? https://www.zhihu.com/question/320606353/answer/658786633
- 5. Andrej Karpathy A Recipe for Training Neural Networks http://karpathy.github.io/2019/04/25/recipe/
- 6. XLNet训练成本6万美元,顶5个BERT,大模型「身价」惊人 https://zhuanlan.zhihu.com/p/71609636?utm_source=wechat_session&utm_medium=social& utm_oi=71065644564480&from=timeline&isappinstalled=0&s_r=0
- 7. Naiyan Wang https://www.zhihu.com/question/50519680/answer/136363665
- 8. 周博磊 https://www.zhihu.com/question/50519680/answer/136359743
- 9. https://blog.csdn.net/qq_22749699/article/details/79460817
- 10. 如何理解soft target这一做法?Yjango https://www.zhihu.com/question/50519680?sort=created
- 11. Jiatao Gu Non-Autoregressive Neural Machine Translation https://zhuanlan.zhihu.com/p/34495294

Thanks!